Skip to main content
Log in

Evidence for Methylerythritol Pathway (MEP) Contributions to Zerumbone Biosynthesis as Revealed by Expression Analysis of Regulatory Genes and Metabolic Inhibitors Studies

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Sesquiterpenoid Zerumbone, the principal secondary metabolite in Zingiber zerumbet Smith, has been identified as the putative molecule conferring resistance against soft-rot causative, Pythium myriotylum. Metabolic precursors for sesquiterpenoid biosynthesis namely, isopentenyl diphosphate (IPP) and DMAPP, are generated either from cytosolic mevalonic acid (MVA) and/or the plastidal methylerythritol phosphate (MEP) pathway. Evaluation of expression pattern of regulatory genes of MEP and MVA pathway following P. myriotylum infection revealed that while transcripts of MVA regulatory gene, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR), did not show significant changes, biphasic expression pattern was observed for MEP pathway regulatory genes, viz., 1-deoxy-D-xylulose-5-phosphate reductase (DXR) and 1-deoxy-D-xylulose-5-phosphate synthase (DXS) as well for ZzTPS (terpene synthase) and Farnesyl phosphate synthase (FPS) compared with uninfected control. Contribution of the two pathways in zerumbone biosynthesis was evaluated in axenic tissue culture raised Z. zerumbet plantlets using MVA and MEP pathway specific inhibitors, mevinolin (MEV) and fosmidomycin (FOS) respectively. Results generated by regulatory gene and metabolite analysis are informative with respect to the role of plastidial IPP pool generated via MEP pathway in zerumbone biosynthesis and the possible redirection of flux in the event of metabolic perturbations mediated by chemical inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baby S, Dan M, Thaha ARM, Johnson AJ, Kurup R, Balakrishnapillai P, Lim CK (2009) High content of zerumbone in volatile oils of Zingiber zerumbet from southern India and Malaysia. Flavour Fragr J 24(6):301–308

    CAS  Google Scholar 

  • Bick JA, Lange BM (2003) Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane. Arch Biochem Biophys 415(2):146–154

    CAS  PubMed  Google Scholar 

  • CABI (2014) Zingiber zerumbet (shampoo ginger). CAB International, Wallingford http://www.cabi.org/isc/datasheet/57539 (accessed 20 June 2018)

    Google Scholar 

  • Chen F, Tholl D, Bohlmann J, Pichersky E (2011) The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66(1):212–229

    CAS  PubMed  Google Scholar 

  • Cheng A, Wang L, Sun Y, Hongxiang Lou H (2013) Identification and expression analysis of key enzymes of the terpenoids biosynthesis pathway of a liverwort Plagiochasma appendiculatum by EST analysis. Acta Physiol Plant 35:107–118

    CAS  Google Scholar 

  • Cusido RM, Palazon J, Bonfill M, Exposito O, Moyano E, Pinol MT (2007) Source of isopentenyl diphosphate for taxol and baccatin III biosynthesis in cell cultures of Taxus baccata. Biochem Eng J 33:159–167

    CAS  Google Scholar 

  • De-Eknamkul W, Potduang B (2003) Biosynthesis of beta-sitosterol and stigmasterol in Croton sublyratus proceeds via a mixed origin of isoprene units. Phytochemistry 62(3):389–398

    CAS  PubMed  Google Scholar 

  • Dudareva N, Andersson S, Orlova I, Gatto N, Reichelt M, Rhodes D, Boland W, Gershenzon J (2005) The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc Nat Acad Sci USA 102(3):933–938

    CAS  PubMed  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    CAS  PubMed  Google Scholar 

  • Hemmerlin A, Hoeffler J-F, Meyer O, Tritsch D, Kagan IA, Grosdemange-Billiard C, Rohmer M, Bach TJ (2003) Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J Biol Chem 278:26666–26676

    CAS  PubMed  Google Scholar 

  • Huang R, O’Donnell AJ, Barboline JJ, Barkman TJ (2016) Convergent evolution of caffeine in plants by co-option of exapted ancestral enzymes. PNAS 113(38):10613–10618

    CAS  PubMed  Google Scholar 

  • Kadowaki N, Ho S, Antonenko S, Malefyt RW, Kastelein RA, Bazan F, Liu Y-J (2001) Subsets of human dendritic cell precursors express different Toll-like receptors and respond to different microbial antigens. J Exp Med 194(6):863–870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanchiswamy CN, Malnoy M, Maffei ME (2015) Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci 6:151

    PubMed  PubMed Central  Google Scholar 

  • Kavitha PG, Nair P, Aswati Nair R, Jayachandran BK, Sabu M, Thomas G (2005) AFLP polymorphism and Pythium response in Zingiber species. In: Kesavachandran R et al (eds) Recent trends in horticultural biotechnology. New India Publishing Agency, New Delhi, pp 232–234

    Google Scholar 

  • Keerthi D, Geethu C, Aswati Nair R, Pillai P (2014) Metabolic profiling of Zingiber zerumbet following Pythium myriotylum infection: investigations on the defensive role of the principal secondary metabolite, Zerumbone. Appl Biochem Biotechnol 172(5):2593–2603

    CAS  PubMed  Google Scholar 

  • Koga AY, Beltrame FL, Pereira AV (2016) Several aspects of Zingiber zerumbet: a review. Braz J Pharmacognosy 26(3):385–391

    CAS  Google Scholar 

  • Köksal M, Jin Y, Coates RM, Croteau R, Christianson DW (2011) Taxadiene synthase structure and evolution of modular architecture in terpene biosynthesis. Nature 469(7328):116–120

    Google Scholar 

  • Kuzuyama T, Shimizu T, Takahashi S, Seto H (1998) Fosmidomycin, a specific inhibitor of 1-Deoxy-d-xylulose 5-phosphate reductoisomerase in the nonmevalonate pathway for terpenoid biosynthesis. Tetrahedron Lett 39:7913–7916

    CAS  Google Scholar 

  • Laule O, Fürholz A, Chang HS, Zhu T, Wang X, Heifetz PB, Gruissem W, Lange M (2003) Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc Nat Acad Sci USA 100(11):6866–6871

    CAS  PubMed  Google Scholar 

  • Li S, Zhang P, Zhang M, Fu C, Zhao C, Dong Y, Guo A, Yu L (2012) Transcriptional profile of Taxus chinensis cells in response to methyl jasmonate. BMC Genomics 13:295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mansouri H, Salari F (2014) Influence of mevinolin on chloroplast terpenoids in Cannabis sativa. Physiol Mol Biol Plants 20(2):273–277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin DM, Gershenzon J, Bohlmann J (2003) Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce. Plant Physiol 132(3):1586–1599

    CAS  PubMed  PubMed Central  Google Scholar 

  • May B, Lange BM, Wüst M (2013) Biosynthesis of sesquiterpenes in grape berry exocarp of Vitis vinifera L.: evidence for a transport of farnesyl diphosphate precursors from plastids to the cytosol. Phytochemistry 95:135–144

    CAS  PubMed  Google Scholar 

  • Ming JC, Vera R, Chalchat JC (2011) Chemical composition of the essential oil from rhizomes, leaves and flowers of Zingiber zerumbet Smith from Reunion Island. J Essent Oil Res 15(3):202–205

    Google Scholar 

  • Nagegowda DA (2010) Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and sub-cellular compartmentation. FEBS Lett 584:2965–2973

    CAS  PubMed  Google Scholar 

  • Okamoto S, Yu F, Harada H, Okajima T, Hattan J, Misawa N, Utsumi R (2011) A short-chain dehydrogenase involved in terpene metabolism from Zingiber zerumbet. FEBS J 278(16):2892–2900

    CAS  PubMed  Google Scholar 

  • Palazón J, Cusidó RM, Bonfill M, Morales C, Piñol MT (2003) Inhibition of paclitaxel and baccatin III accumulation by mevinolin and fosmidomycin in suspension cultures of Taxus baccata. J Biotechnol 101(2):157–163

    PubMed  Google Scholar 

  • Pazouki L, Niinemets Ü (2016) Multi-substrate terpene synthases: their occurrence and physiological significance. Front Plant Sci 7(1019):1–16

    Google Scholar 

  • Peter P, Aswati RN, Divakaran K, Ganapathy G (2019) Evaluating type III polyketide synthase (PKS) and terpene synthase (TPS) expression in incompatible interactions of Zingiber zerumbet to Pythium myriotylum Drechsler. Arch Phytopathol Plant Protect 52:1161–1176

    CAS  Google Scholar 

  • Ramakrishna A, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6(11):1720–1731

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Concepción M, Boronat A (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids: a metabolic milestone achieved through genomics. Plant Physiol 130(3):1079–1089

    PubMed  Google Scholar 

  • Rodriguez-Concepcion M, Gruissem W (1999) Arachidonic acid alters tomato HMG expression and fruit growth and induces 3-hydroxy-3-methylglutaryl coenzyme A reductase-independent lycopene accumulation. Plant Physiol 119:41–48

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sallaud C, Rontein D, Onillon S, Jabès F, Duffé P, Giacalone C, Tissier A (2009) A novel pathway for sesquiterpene biosynthesis from Z,Z-Farnesyl pyrophosphate in the wild tomato Solanum habrochaites. Plant Cell 21(1):301–317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salzman R, Fujita T, Zhu-Salzman K, Hasegawa PM, Bressan RA (1999) An improved RNA isolation method for plant tissues containing high levels of phenolic compounds or carbohydrates. Plant Mol Biol Report 17(1):11–17

    CAS  Google Scholar 

  • Savoi S, Wong DCJ, Arapitsas P, Miculan M, Bucchetti B, Peterlunger E, Fait A, Mattivi F, Castellarin SD (2016) Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.). BMC Plant Biol 16:67

    PubMed  PubMed Central  Google Scholar 

  • Srivastava M, Sharma S, Misra P (2016) Elicitation based enhancement of secondary metabolites in Rauwolfia serpentina and Solanum khasianum hairy root cultures. Pharmacogn Mag 12(3):S315–S320

    PubMed  PubMed Central  Google Scholar 

  • Steliopoulos P, Wust M, Adam KP, Mosandl A (2002) Biosynthesis of the sesquiterpene germacrene D in Solidago canadensis: 13C and 2H labeling studies. Phytochemistry 60:13–20

    CAS  PubMed  Google Scholar 

  • Strack D, Fester T (2006) Isoprenoid metabolism and plastid reorganization in arbuscular mycorrhizal roots. New Phytol 172:22–34

    CAS  PubMed  Google Scholar 

  • Sulaiman MR, Mohamad TAST, Mossadeq WMS, Moin S, Yusof M, Mokhtar AF, Zakaria ZA, Israf DA, Lajis N (2010) Antinociceptive activity of the essential oil of Zingiber zerumbet. Planta Med 76(2):107–112

    CAS  PubMed  Google Scholar 

  • Tholl D (2015) Biosynthesis and biological functions of terpenoids in plants. Adv Biochem Eng Biotechnol 148(1):63–106

    CAS  PubMed  Google Scholar 

  • Tholl D, Lee S (2011) Terpene specialized metabolism in Arabidopsis thaliana. Arabidopsis Book 9:e0143

    PubMed  PubMed Central  Google Scholar 

  • Towler MJ, Weathers PJ (2007) Evidence of artimisnin production from IPP stemming from both the mevalonate and the non-mevalonate pathways. Plant Cell Rep 26:2129–2136

    CAS  PubMed  Google Scholar 

  • Vranová E, Coman D, Gruissem W (2013) Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol 64:665–700

    PubMed  Google Scholar 

  • Walter M, Floss D, Strack D (2010) Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles. Planta 232:1–17

    CAS  PubMed  Google Scholar 

  • Wang Y-D, Yuan Y-J, Lu M, Wu J-C, Jiang J-L (2003) Inhibitor studies of isopentenyl pyrophosphate biosynthesis in suspension cultures of the yew Taxus chinensis var. mairei. Biotechnol Appl Biochem 37:39–43

    CAS  PubMed  Google Scholar 

  • Wildung MR, Croteau RB (2005) Genetic engineering of peppermint for improved essential oil composition and yield. Transgenic Res 14:365–372

    CAS  PubMed  Google Scholar 

  • Wölwer-Rieck U, May B, Lankes C, Wüst M (2014) Methylerythritol and mevalonate pathway contributions to biosynthesis of mono-, sesqui-, and diterpenes in glandular trichomes and leaves of Stevia rebaudiana Bertoni. J Agric Food Chem 62(11):2428–2435

    PubMed  Google Scholar 

  • Wu S, Schalk M, Clark A, Miles RB, Coates R, Chappell J (2006) Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat Biotechnol 24(11):1441–1447

    CAS  PubMed  Google Scholar 

  • Yang D, Du X, Liang X, Han R, Liang Z, Liu Y, Liu F, Zhao J (2012) Different roles of the Mevalonate and Methylerythritol phosphate pathways in cell growth and Tanshinone production of Salvia miltiorrhiza hairy roots. PLoS One 7(11):1–9

    Google Scholar 

  • Yob NJ, Jofrry SM, Affandi MM, The LK, Salleh MZ, Zakaria ZA (2011) Zingiber zerumbet (L.) Smith: a review of its ethnomedicinal, chemical, and pharmacological uses. Evid Based Complement Alternat Med 2011(1):1–8

    Google Scholar 

  • Yu F, Harada H, Yamasaki K, Okamoto S, Hirase S, Tanaka Y, Misawa N, Utsumi R (2008a) Isolation and functional characterization of a β-eudesmol synthase, a new sesquiterpene synthase from Zingiber zerumbet Smith. FEBS Lett 582(5):565–572

    CAS  PubMed  Google Scholar 

  • Yu F, Okamto S, Nakasone K, Adachi K, Matsuda S, Harada H, Misawa N, Utsumi R (2008b) Molecular cloning and functional characterization of α-humulene synthase, a possible key enzyme of zerumbone biosynthesis in shampoo ginger (Zingiber zerumbet Smith). Planta 227(6):1291–1299

    CAS  PubMed  Google Scholar 

  • Yu F, Okamoto S, Harada H, Yamasaki K, Misawa N, Utsumi R (2011) Zingiber zerumbet CYP71BA1 catalyzes the conversion of alpha-humulene to 8-hydroxy- alpha-humulene in zerumbone biosynthesis. Cell Mol Life Sci 68(6):1033–1040

    CAS  PubMed  Google Scholar 

  • Zhi L, Yu LJ, Li CY, Zhao CF (2005) Effects of fosmidomycin and lovastatin treatment on taxol biosynthesis in suspension culture cells of Taxus chinensis. J Plant Physiol Mol Biol 31(2):199–204

    Google Scholar 

Download references

Acknowledgments

KD acknowledges the research fellowship received from Ministry of Human Resource and Development (MHRD), Government of India. Authors are grateful to NITC CUK for the research facilities extended.

Funding

The study was financially supported by the Department of Science and Technology-Science and Engineering Research Board (DST-SERB) for research grant (no. EMR/2016/002229).

Author information

Authors and Affiliations

Authors

Contributions

RAN conceived and designed the experiments. RAN and KD performed the experiment. RAN, KD, and PP analyzed the results and wrote the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Aswati Ravindranathan Nair.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Message

• Biphasic expression observed for methylerythritol (MEP) pathway regulatory genes in Zingiber zerumbet following Pythium myriotylum infection.

• Metabolite analysis of in vitro plantlets treated with mevinolin (MEV) and fosmidomycin (FOS) reveals 54-fold decrease in zerumbone following FOS treatment.

• Identified plastidial IPP flux contributing more towards zerumbone biosynthesis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, A.R., Divakaran, K. & Pillai, P. Evidence for Methylerythritol Pathway (MEP) Contributions to Zerumbone Biosynthesis as Revealed by Expression Analysis of Regulatory Genes and Metabolic Inhibitors Studies. Plant Mol Biol Rep 38, 370–379 (2020). https://doi.org/10.1007/s11105-020-01202-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-020-01202-5

Keywords

Navigation