Skip to main content

Advertisement

Log in

Time–Temperature–Precipitation Relations for Nitrides and Evaluation of Internal Oxidation Theory for Nitridation of Austenitic Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Internal nitridation kinetics were determined for a UNS N08810/800H alloy using a general model of the form \(x^{n}=kt\). Nitridation behavior was studied at service-relevant temperatures 800 °C to 1000 °C in a 95 pct \(\hbox {N}_2/5\,{\text{pct}}\)\(\hbox {H}_2\) atmosphere for times 50 to 750 hours. Optical and scanning electron microscopy were used for microstructural characterization and measurement of nitride penetration. AlN, \(\hbox {Cr}_2\hbox {N}\), and CrN were formed, and the experimentally observed precipitation sequence was consistent with equilibrium calculations for this alloy using Thermo-Calc. A combination of diffusivity data determined using DICTRA and experimentally verified equilibrium calculations showed that Wagner’s analysis for internal oxidation kinetics was valid for AlN penetration. Parabolic kinetics closely approximated measured AlN penetration. This suggests that extension of AlN penetration models to other temperatures and Fe-Ni-Cr-Al alloy systems is reasonable. \(\hbox {Cr}_2\hbox {N}\) penetration did not conform to Wagner’s analysis. Deviation from parabolic behavior was evident, and general model penetration predictions for \(\hbox {Cr}_2\hbox {N}\) were experimentally validated. Using the experimentally determined models, time–temperature–precipitation diagrams for AlN and \(\hbox {Cr}_2\hbox {N}\) penetration were constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. G. Y. Lai: High-Temperature Corrosion and Materials Applications, 1st ed., ASM International, Materials Park, OH, 2007.

    Book  Google Scholar 

  2. C. W. Thomas and M. J. Smillie: Ammonia Technical Manual, American Institute of Chemical Engineers, Montreal, CA, 2011, vol. 52, pp. 101–11.

    Google Scholar 

  3. P. Kodali and J. P. Richert: Corrosion 2003, NACE International, Houston, TX, 2003.

  4. J. J. Hoffman and G. Y. Lai: Corrosion 2005, NACE International, Houston, TX, 2005.

  5. S.N. Monteiro: Corrosion in the Petrochemical Industry, 1st ed., ASM International, Materials Park, OH, 1994, pp. 351–54.

  6. M.F. Ashby and B.F. Dyson: Fracture 84, Pergamon Press, New Dehli, 1984, pp. 3–30.

  7. S. Han and D. J. Young: Oxid. Met., 2001, vol. 55, pp. 223–242.

    Article  CAS  Google Scholar 

  8. V. B. Trindade, U. Krupp, B. Gorr, D. Kaczorowski, G. Girardin, and H. J. Christ: Mater. Corros., 2008, vol. 59, pp. 602–608.

    Article  CAS  Google Scholar 

  9. D. J. Young: High Temperature Oxidation and Corrosion of Metals, 1st ed., Elsevier, Oxford, UK, 2008, pp. 247–314.

    Book  Google Scholar 

  10. R. Elger, H. Magnusson, and K. Frisk: Mater. Corros., 2017, vol. 68, pp. 143–150.

    Article  CAS  Google Scholar 

  11. F.G. Wilson and T. Gladman: Int. Mater. Rev., 1988, vol. 33, pp. 221–288.

    Article  CAS  Google Scholar 

  12. J. W. Simmons: Metall. Mater. Trans. A, 1995, vol. 26, pp. 2579–2595.

    Article  Google Scholar 

  13. C. Wagner: Z. Elektrochem., 1959, vol. 63, pp. 772–782.

    CAS  Google Scholar 

  14. R. A. Rapp: Corrosion, 1965, vol. 21, pp. 382–401.

    Article  CAS  Google Scholar 

  15. M. Udyavar and D.J. Young: Corros. Sci., 2000, vol. 42, pp. 861–883.

    Article  CAS  Google Scholar 

  16. M. Welker, A. Rahmel, and M. Schütze: Metall. Trans. A, 1989, vol. 20, pp. 1541–1551.

    Article  Google Scholar 

  17. K. Tjokro and D. J. Young: Oxid. Met., 1995, vol. 44, pp. 453–474.

    Article  CAS  Google Scholar 

  18. J.A. Klöwer, U. Brill, and M. Rockel: Mater. Corros., 1997, vol. 48, pp. 511–517.

    Article  Google Scholar 

  19. R. Elger and R. Pettersson: Oxid. Met., 2014, vol. 82, pp. 469–490.

    Article  CAS  Google Scholar 

  20. U. Krupp and H.-J. Christ: Metall. Mater. Trans. A, 2000, vol. 31, pp. 47–56.

    Article  Google Scholar 

  21. L. E. Kindlimann and G. S. Ansell: Metall. Trans., 1970, vol. 1, pp. 163–170.

    CAS  Google Scholar 

  22. B. A. Pint, M. J. Dwyer, and R. M. Deacon: Oxid. Met., 2008, vol. 69, pp. 211–231.

    Article  CAS  Google Scholar 

  23. D. L. Douglass: Oxid. Met., 1995, vol. 44, pp. 81–111.

    Article  CAS  Google Scholar 

  24. ASME-B36.10M-2018: Welded and Seamless Wrought Steel Pipe, The American Society of Mechanical Engineers, New York, NY, 2018.

  25. Special Metals Corporation: Incoloy Alloy 800H & 800HT, Special Metals Corporation, 2004, http://www.specialmetals.com/assets/smc/documents/alloys/incoloy/incoloy-alloys-800h-800ht.pdf, accessed (24 Feb 2017).

  26. ISO-21608:2012: Corrosion of Metals and Alloys: Test Method for Isothermal-Exposure Oxidation Testing under High-Temperature Corrosion Conditions for Metallic Materials, International Organization for Standardization, Geneva, Switzerland, 2012.

  27. MATLAB-R2017b: The Mathworks Inc., Natick, Massachusetts, 2017.

  28. J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona: Nat. Methods, 2012, vol. 9, pp. 676–82.

    Article  CAS  Google Scholar 

  29. J.-O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman: Calphad, 2002, vol. 26, pp. 273–312.

    Article  CAS  Google Scholar 

  30. J. Erneman, J.-O. Nilsson, H.-O. Andrén, and D. Tobjörk: Metall. Mater. Trans. A, 2009, vol. 40, pp. 539–550.

    Article  Google Scholar 

  31. H. O. Pierson: Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing, and Applications, Noyes Publications, Park Ridge, N.J., 1996, p. 193.

    Google Scholar 

  32. A. L. Beardsley, C. M. Bishop, and M. V. Kral: Mater. Perform. Charact., 2016, vol. 5, pp. 717–39.

    CAS  Google Scholar 

  33. J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. E. Lyman, E. Lifshin, L. Sawyer, and J. R. Michael: Scanning Electron Microscopy and X-Ray Microanalysis, 3rd ed., Springer, New York, NY, 2003, p. 72.

    Book  Google Scholar 

  34. L. Tan, L. Rakotojaona, T.R. Allen, R.K. Nanstad, and J.T. Busby: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2755–61.

  35. D. A. Porter, K. E. Easterling, and M. Y. Sherif: Phase Transformations in Metals and Alloys, 3rd ed., CRC Press, Boca Raton, FL, 2009.

    Google Scholar 

  36. M. Kikuchi, M. Kajihara, and S.-K. Choi: Mater. Sci. Eng. A, 1991, vol. 146, pp. 131–50.

  37. A. J. Ramirez, J. C. Lippold, and S. D. Brandi: Metall. Mater. Trans. A, 2003, vol. 34, pp. 1575–97.

    Article  Google Scholar 

  38. T.H. Lee, S.J. Kim, and S. Takaki: Metall. Mater. Trans. A, 2006, vol. 37, pp. 3445–54.

    Article  Google Scholar 

  39. O.-N. Hideki, K. Taguchi, T. Usui, K. Tamura, and Y. Tomatsu: Metall. Mater. Trans. B, 2001, vol. 32, pp. 1113–1118.

    Article  Google Scholar 

  40. ISO-26146:2012: Corrosion of Metals and Alloys: Method for Metallographic Examination of Samples after Exposure to High-Temperature Corrosive Environments, International Organization for Standardization, Geneva, Switzerland, 2012.

  41. M.W. Chase, Jr, C.A. Davies, J.R. Downey, Jr, D.J. Frurip, R.A. McDonald, and A.N. Syverud: JANAF Thermochemical Tables, 3rd ed., American Chemical Society, Washington, DC, 1986, vol. 14, p. 131.

    Google Scholar 

  42. G. C. Savva, G. C. Weatherly, and J. S. Kirkaldy: Metall. Mater. Trans. A, 1996, vol. 27, pp. 1611–1622.

    Article  Google Scholar 

  43. I. C. Chen and D. L. Douglass: Oxid. Met., 1990, vol. 34, pp. 473–496.

    Article  CAS  Google Scholar 

  44. D. C. Montgomery and G. C. Runger: Applied Statistics and Probability for Engineers, 5th ed., John Wiley & Sons, Hoboken, NJ, 2011, pp. 445–451.

    Google Scholar 

  45. X. G. Zheng and D. J. Young: Oxid. Met., 1994, vol. 42, pp. 163–190.

    Article  CAS  Google Scholar 

  46. P. G. Shewmon: Transformations in Metals, McGraw-Hill, New York, 1969.

    Google Scholar 

  47. J. Litz, A. Rahmel, and M. Schorr: Oxid. Met., 1988, vol. 30, pp. 95–105.

    Article  CAS  Google Scholar 

  48. M.A. Harper, J.E. Barnes, and G.Y. Lai: Corrosion 97, NACE International, Houston, TX, 1997.

Download references

Acknowledgments

The financial support of the Methanex Corporation in conducting this research is gratefully acknowledged. The authors would like to thank Peter Tait of Methanex New Zealand Ltd. for his support, and Assoc. Prof. Matt Watson and Leigh Richardson from the University of Canterbury Chemical and Process Engineering Department for the use of their facilities and their assistance in conducting nitridation treatments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine M. Bishop.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 9, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1205 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Young, A.M., Kral, M.V. & Bishop, C.M. Time–Temperature–Precipitation Relations for Nitrides and Evaluation of Internal Oxidation Theory for Nitridation of Austenitic Stainless Steel. Metall Mater Trans A 51, 4456–4470 (2020). https://doi.org/10.1007/s11661-020-05868-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05868-0

Navigation