Skip to main content
Log in

Magnetic-Field-Induced Liquid–Solid Interface Transformation and Its Effect on Microsegregation in Directionally Solidified Ni-Cr Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The transformation of liquid–solid interface induced by the steady magnetic field (SMF) in the directionally solidified Ni-10 wt pct Cr alloy was studied experimentally. At the moderate pulling rate (50 μm s−1), it could be observed that the interface morphology gradually transformed from planar to cellular shape with increasing the SMF intensity (0 T, 3 T, 6 T). However, the cellular interface at the high pulling rate (100 μm s−1) was not influenced by the SMF. 3D numerical simulations suggested that the transformation of interface morphology originated from the thermoelectric magnetic convection near the wavelike interface at the early stage of solidification. From the composition measurement, it was found that the formation of microsegregation at the moderate pulling rate was associated with the interface morphology. Under the 3 T SMF, the liquid–solid interface remained planar and the microsegregation level increased in comparison with that without the SMF. Under the 6 T SMF, the liquid–solid interface became cellular and the microsegregation level was reduced. The factors affecting microsegregation were evaluated. The effective partition coefficient was estimated based on composition data. It was revealed that the effective partition coefficient increased with the 6 T SMF due to the thermoelectric magnetic and magnetic damping effects within the cellular structure. Additionally, the solid diffusivity was measured using the diffusion couple technique. It was found that the interdiffusion coefficient of Cr decreased with increasing the SMF intensity. The modified Brody model was used to predict the microsegregation behavior in the SMF. The predicted results were in agreement with experimental observation. It could be concluded that the decrease in solid diffusivity enhanced the formation of microsegregation for the planar interface, whereas the increase in effective partition coefficient in the SMF was beneficial for alleviating the extent of microsegregation for the cellular interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Darolia: Int. Mater. Rev., 2019, vol. 64, pp. 355-80.

    CAS  Google Scholar 

  2. F. Pyczak, B. Devrient, F. C. Neuner and H. Mughrabi: Acta Mater., 2005, vol. 53, pp. 3879-91.

    CAS  Google Scholar 

  3. S. L. Shang, C. L. Zacherl, H. Z. Fang, Y. Wang, Y. Du and Z. K. Liu: J. Phys.: Condens. Matter, 2012, vol. 24, p. 505403.

    CAS  Google Scholar 

  4. B. Seiser, R. Drautz and D. G. Pettifor: Acta Mater., 2011, vol. 59, pp. 749-63.

    CAS  Google Scholar 

  5. N. Zhou, D. C. Lv, H. L. Zhang, D. McAllister, F. Zhang, M. J. Mills and Y. Wang: Acta Mater., 2014, vol. 65, pp. 270-86.

    CAS  Google Scholar 

  6. G. X. Wang, V. Prasad and E. F. Matthys: Mater. Sci. Eng. A, 1997, vol. 225, pp. 47-58.

    Google Scholar 

  7. G. Kasperovich, T. Volkmann, L. Ratke and D. Herlach: Metall. Mater. Trans. A, 2008, vol. 39, pp. 1183–91.

    CAS  Google Scholar 

  8. M.S.A. Karunaratne, D.C. Cox, P. Carter and R.C. Reed: Superalloys, 2000, vol. 20, pp. 263-72.

    Google Scholar 

  9. S. N. Samaras and G. N. Haidemenopoulos: J. Mater. Process. Technol., 2007, vol. 194, pp. 63-73.

    CAS  Google Scholar 

  10. P. Rudolph and K. Kakimoto: MRS Bull., 2009, vol. 34, pp. 251-58.

    CAS  Google Scholar 

  11. S.Y. He, C.J. Li, T.J. Zhan, W.D. Xuan, J. Wang, Z.M. Ren (2020) Acta Metall. Sin. 33:267–74

    CAS  Google Scholar 

  12. D. Chen, H. Zhang, H. Jiang and J. Cui: Materialwiss. Werkstofftech., 2011, vol. 42, pp. 500-05.

    CAS  Google Scholar 

  13. W. V. Youdelis and R. C. Dorwar: Can. J. Phys., 1966, vol. 44, pp. 139-50.

    CAS  Google Scholar 

  14. X. Li, Y. Fautrelle, A. Gagnoud, D. Du, J. Wang, Z. Ren, H. Nguyen-Thi and N. Mangelinck-Noel: Acta Mater., 2014, vol. 64, pp. 367-81.

    CAS  Google Scholar 

  15. D. Du, Y. Fautrelle, Z. Ren, R. Moreau and X. Li: ISIJ Int., 2017, vol. 57, pp. 833-40.

    CAS  Google Scholar 

  16. Z. Shen, B. Zhou, Y. Zhong, L. Dong, H. Wang, L. Fan, T. Zheng, C. Li, W. Ren, W. Xuan and Z. Ren: Metall. Mater. Trans. A, 2018, vol. 49, pp. 3373-82.

    Google Scholar 

  17. X. Li, A. Gagnoud, Z. M. Ren, Y. Fautrelle and F. Debray: J. Mater. Res., 2013, vol. 28, pp. 2810-18.

    CAS  Google Scholar 

  18. X. Li, Y. Fautrelle, Z. M. Ren, A. Gagnoud, R. Moreau, Y. D. Zhang and C. Esling: Acta Mater., 2009, vol. 57, pp. 1689-701.

    CAS  Google Scholar 

  19. L. Hou, Y. C. Dai, Y. Fautrelle, Z. B. Li, Z. M. Ren, C. Esling and X. Li: J. Alloys Compd., 2018, vol. 758, pp. 54-61.

    CAS  Google Scholar 

  20. W. L. Ren, L. Lu, G. Z. Yuan, W. D. Xuan, Y. B. Zhong, J. B. Yu and Z. M. Ren: Mater. Lett., 2013, vol. 100, pp. 223-26.

    CAS  Google Scholar 

  21. W. Ren, C. Niu, B. Ding, Y. Zhong, J. Yu, Z. Ren, W. Liu, L. Ren and P. K. Liaw: Sci. Rep., 2018, vol. 8, pp. 1-17.

    Google Scholar 

  22. J. Yu, D. Du, Z. Ren, Y. Fautrelle, R. Moreau and X. Li: ISIJ Int., 2017, vol. 57, pp. 337-42.

    CAS  Google Scholar 

  23. X. Li, Y. Fautrelle and Z. M. Ren: Acta Mater., 2007, vol. 55, pp. 3803-13.

    CAS  Google Scholar 

  24. S. He, C. Li, R. Guo, W. Xuan, J. Wang and Z. Ren: J. Alloys Compd., 2019, vol. 800, pp. 41-49.

    CAS  Google Scholar 

  25. H.D. Brody: Solute redistribution in dendritic solidification. Massachusetts Institute of Technology, the USA, 1965, pp. 20–55.

  26. H. Engelhardt and M. Rettenmayr: Acta Mater., 2015, vol. 95, pp. 212-15.

    CAS  Google Scholar 

  27. M. N. Gungor: Metall. Trans. A, 1989, vol. 20, pp. 2529–33.

    Google Scholar 

  28. R. Smith: Metall. Mater. Trans. B, 2018, vol. 49, pp. 3258-79.

    Google Scholar 

  29. Z. J. Yuan, Z. M. Ren, C. J. Li, Q. Xiao, Q. L. Wang, Y. M. Dai and H. Wang: Mater. Lett., 2013, vol. 108, pp. 340-42.

    CAS  Google Scholar 

  30. X. Li, Y. Fautrelle and Z. Ren: Acta Mater., 2007, vol. 55, pp. 1377-86.

    CAS  Google Scholar 

  31. J. Wang, Y. Fautrelle, Z. M. Ren, H. Nguyen-Thi, G. S. A. Jaoude, G. Reinhart, N. Mangelinck-Noël, X. Li and I. Kaldre: Appl. Phys. Lett., 2014, vol. 104, p. 121916.

    Google Scholar 

  32. F. Baltaretu, J. Wang, S. Letout, Z.M. Ren, X. Li, O. Budenkova and Y. Fautrelle: Magnetohydrodynamics, 2015, vol. 51, pp. 45-55.

    Google Scholar 

  33. M. Yousuf, P. C. Sahu and K. G. Rajan: Phys. Rev. B, 1986, vol. 34, pp. 8086-100.

    CAS  Google Scholar 

  34. T. P. Wang, C. D. Starr and N. Brown: Acta Metall., 1966, vol. 14, pp. 649-57.

    CAS  Google Scholar 

  35. V. G. Postovalov, E. P. Romanov, V. P. Kondrat’ev and V. I. Kononenko: High Temp., 2003, vol. 41, pp. 762-70.

    CAS  Google Scholar 

  36. K. Mukai, F. Xiao, K. Nogi and Z. Li: Mater. Trans., 2004, vol. 45, pp. 2357-63.

    CAS  Google Scholar 

  37. J. A. Burton, R. C. Prim and W. P. Slichter: J. Chem. Phys., 1953, vol. 21, pp. 1987-91.

    CAS  Google Scholar 

  38. T. W. Clyne and W. Kurz: Metall. Trans. A, 1981, vol. 12, pp. 965–71.

    Google Scholar 

  39. D. H. Kirkwood: Mater. Sci. Eng., 1984, vol. 65, pp. 101-09.

    CAS  Google Scholar 

  40. V. R. Voller: J. Cryst. Growth., 2001, vol. 226, pp. 562-68.

    CAS  Google Scholar 

  41. W. V. Youdelis, D. R. Colton and J. Cahoon: Can. J. Phys., 1964, vol. 42, pp. 2217-37.

    CAS  Google Scholar 

  42. S. Nakamichi, S. Tsurekawa, Y. Morizono, T. Watanabe, M. Nishida and A. Chiba: J. Mater. Sci., 2005, vol. 40, pp. 3191-98.

    CAS  Google Scholar 

  43. X. Ren, G. Q. Chen, W. L. Zhou, C. W. Wu and J. S. Zhang: J. Alloys Compd., 2009, vol. 472, pp. 525-29.

    CAS  Google Scholar 

  44. J. M. Philibert: Atom movements-Diffusion and mass transport in solids. EDP Sciences, Les Ulis, France, 2012, pp. 33-61.

    Google Scholar 

  45. Y. Aoki, S. Hayashi and H. Komatsu: J. Cryst. Growth., 1992, vol. 123, pp. 313-16.

    CAS  Google Scholar 

  46. F. Xiao, R. Yang, L. Fang and C. Zhang: Mater. Sci. Eng. B, 2006, vol. 132, pp. 193-96.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Nos. U1560202, 51690162, 51604171), Shanghai Municipal Science and Technology Commission Grant (No. 17JC1400602), China Scholarship Council (No. 201806890052), and National Science and Technology Major Project “Aeroengine and Gas Turbine” (2017-VII-0008-0102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuanjun Li or Zhongming Ren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 25, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Li, C., Yuan, Z. et al. Magnetic-Field-Induced Liquid–Solid Interface Transformation and Its Effect on Microsegregation in Directionally Solidified Ni-Cr Alloy. Metall Mater Trans A 51, 4592–4601 (2020). https://doi.org/10.1007/s11661-020-05887-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05887-x

Navigation