Skip to main content
Log in

Impact Behavior for Successful Particle–Particle Bonding in Vacuum Kinetic Spraying

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

This study investigated the impact behavior of ceramic particles in vacuum kinetic spray (VKS), also known as aerosol deposition method, for successful coating build-up using both experimental methods and numerical simulations. A coating trial and fluid dynamics simulation results showed that there existed a critical impact velocity at which successive coating build-up was possible. This indicated that particle–particle bonding could be achieved through sufficient kinetic energy of impacting particles. According to the results in this study, it is suggested that the critical velocity values for deposition of Al2O3 and SiO2 in VKS were 400 and 300 m/s, respectively. The AUTODYN simulation results revealed that the initial kinetic energy of particles at high impact velocity should be consumed by fracture and deformation of both impacting particles and the pre-deposited layer. Above critical impact velocity, it is expected that high von Mises stress, pressure, and temperature values contribute to dynamic fragmentation of impacting particles, additional size reduction of crystallites, and consolidation for uncontaminated intimate inter-crystallite faying surface bonding. It is expected that these material responses contributed to the dense and strong VKS coating fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. X. Luo, C. Li, F. Shang, G. Yang, Y. Wang, and C. Li, High Velocity Impact Induced Microstructure Evolution During Deposition of Cold Spray Coatings: A Review, Surf. Coat. Technol., 2014, 254(15), p 11-20 (in English)

    CAS  Google Scholar 

  2. J. Akedo, Aerosol Deposition of Ceramic Thick Films at Room Temperature: Densification Mechanism of Ceramic Layers, J. Am. Ceram. Soc., 2006, 89(6), p 1834-1839 (in English)

    CAS  Google Scholar 

  3. J. Akedo, Room Temperature Impact Consolidation (RTIC) of Fine Ceramic Powder by Aerosol Deposition Method and Applications to Microdevices, J. Therm. Spray Technol., 2008, 17(2), p 181-198 (in English)

    CAS  Google Scholar 

  4. A. Moridi, S. Hassani-Gangaraj, M. Guagliano, and M. Dao, Cold Spray Coating: Review of Material Systems and Future PERSPECTIVES, Surf. Eng., 2014, 30(6), p 369-395 (in English)

    CAS  Google Scholar 

  5. M. Rokni, S. Nutt, C. Widener, V. Champagne, and R. Hrabe, Review of Relationship Between Particle Deformation, Coating Microstructure, and Properties in High-Pressure Cold Spray, J. Therm. Spray Technol., 2017, 26(6), p 1308-1355 (in English)

    Google Scholar 

  6. D. Hanft, J. Exner, M. Schubert, T. Stöcker, P. Fuierer, and R. Moos, An Overview of the Aerosol Deposition Method: Process Fundamentals and New Trends in Materials Applications, J. Ceram. Sci. Technol., 2015, 6(3), p 147-182 (in English)

    Google Scholar 

  7. R. Dykhuizen, M. Smith, D. Gilmore, R. Neiser, X. Jiang, and S. Sampath, Impact of High Velocity Cold Spray Particles, J. Therm. Spray Technol., 1999, 8(4), p 559-564 (in English)

    CAS  Google Scholar 

  8. T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54(3), p 729-742 (in English)

    CAS  Google Scholar 

  9. G. Bae, Y. Xiong, S. Kumar, K. Kang, and C. Lee, General Aspects of Interface Bonding in Kinetic Sprayed Coatings, Acta Mater., 2008, 56(17), p 4858-4868 (in English)

    CAS  Google Scholar 

  10. C. Lee and J. Kim, Microstructure of Kinetic Spray Coatings: A Review, J. Therm. Spray Technol., 2015, 24(4), p 592-610 (in English)

    CAS  Google Scholar 

  11. H. Ogawa, Molecular Dynamics Simulation on the Modification of Crystallographic Orientation in Fragmented Particles in the Aerosol-Deposition Process, Mater. Trans., 2007, 48, p 2067-2071 (in English)

    CAS  Google Scholar 

  12. D. Lee, H. Kim, Y. Kim, Y. Yun, and S. Nam, Growth Process of α-Al2O3 Ceramic Films on Metal Substrates Fabricated at Room Temperature by Aerosol Deposition, J. Am. Ceram. Soc., 2011, 94(9), p 3131-3138 (in English)

    CAS  Google Scholar 

  13. F. Cao, H. Park, G. Bae, J. Heo, and C. Lee, Microstructure Evolution of Titanium Nitride Film during Vacuum Kinetic Spraying, J. Am. Ceram. Soc., 2013, 96(1), p 40-43 (in English)

    CAS  Google Scholar 

  14. H. Kwon, H. Park, and C. Lee, Roles of Particle Size Distribution in Bimodal Feedstocks on the Deposition Behavior and Film Properties in Vacuum Kinetic Spraying, J. Therm. Spray Technol., 2018, 27(5), p 857-869 (in English)

    CAS  Google Scholar 

  15. J. Exner, M. Schubert, D. Hanft, J. Kita, and R. Moos, How to Treat Powders for the Room Temperature Aerosol Deposition Method to Avoid Porous, Low Strength Ceramic Films, J. Eur. Ceram. Soc., 2019, 39(2–3), p 592-600 (in English)

    CAS  Google Scholar 

  16. F. Cao, H. Park, J. Heo, J. Kwon, and C. Lee, Effect of Process Gas Flow on the Coating Microstructure and Mechanical Properties of Vacuum Kinetic-Sprayed TiN Layers, J. Therm. Spray Technol., 2013, 22(7), p 1109-1119 (in English)

    CAS  Google Scholar 

  17. J. Kwon, H. Park, I. Lee, and C. Lee, Effect of Gas Flow Rate on Deposition Behavior of Fe-Based Amorphous Alloys in Vacuum Kinetic Spray Process, Surf. Coat. Technol., 2014, 259(25), p 585-593 (in English)

    CAS  Google Scholar 

  18. H. Park, H. Kwon, and C. Lee, Inflight Particle Behavior in the Vacuum Kinetic Spray Process, J. Therm. Spray Technol., 2017, 26(7), p 1616-1631 (in English)

    CAS  Google Scholar 

  19. D. Walter, Primary Particles–Agglomerates–Aggregates, Nanomaterials, 2013, 8, p 9-24 (in English)

    Google Scholar 

  20. J. Kim, H. Kwon, H. Park, and C. Lee, Microstructural Features Affecting Optical Properties of Vacuum Kinetic Sprayed Al2O3 Thin Film, Surf. Interfaces, 2017, 9, p 114-123 (in English)

    CAS  Google Scholar 

  21. H. Park, H. Kwon, Y. Kim, and C. Lee, Computational Research on Factors Affecting Particle Velocity in a Vacuum Kinetic Spray Process, J. Therm. Spray Technol., 2019, 28(8), p 1945-1958 (in English)

    Google Scholar 

  22. D. Chun and S. Ahn, Deposition Mechanism of Dry Sprayed Ceramic Particles at Room Temperature Using a Nano-Particle Deposition System, Acta Mater., 2011, 59(7), p 2693-2703 (in English)

    CAS  Google Scholar 

  23. H. Park, J. Kim, S.B. Lee, and C. Lee, Correlation of Fracture Mode Transition of Ceramic Particle with Critical Velocity for Successful Deposition in Vacuum Kinetic Spraying Process, J. Therm. Spray Technol., 2017, 26(3), p 327-339 (in English)

    Google Scholar 

  24. T. Holmquist, G. Johnson, C. Lopatin, D. Grady, and E. Hertel, Jr., High Strain Rate Properties and Constitutive Modeling of Glass, Sandia National Labs, Albuquerque, 1995 (in English)

    Google Scholar 

  25. G. McIntosh, The Johnson-Holmquist ceramic model as used in LS-DYNA 2D, Defense Research Establishment Valcartier (QUEBEC), 1998 (in English).

  26. H. Katanoda, M. Fukuhara, and N. Iino, Numerical Simulation on Impact Velocity of Ceramic Particles Propelled by Supersonic Nitrogen Gas Flow in Vacuum Chamber, Mater. Trans., 2007, 48(6), p 1463-1468 (in English)

    CAS  Google Scholar 

  27. S. Johnson, D. Schwer, D. Park, Y. Park, and E. Gorzkowski, Deposition Efficiency of Barium Hexaferrite by Aerosol Deposition, Surf. Coat. Technol., 2017, 332(25), p 542-549 (in English)

    CAS  Google Scholar 

  28. D. Lee, H. Kim, Y. Kim, M. Jeon, and S. Nam, Substrate Hardness Dependency on Properties of Al2O3 Thick Films Grown by Aerosol Deposition, Surf. Coat. Technol., 2012, 209(25), p 160-168 (in English)

    CAS  Google Scholar 

  29. H. Park, J. Kwon, I. Lee, and C. Lee, Shock-Induced Plasticity and Fragmentation Phenomena During Alumina Deposition in the Vacuum Kinetic Spraying Process, Scripta Mater., 2015, 100, p 44-47 (in English)

    CAS  Google Scholar 

  30. H. Park, J. Kim, and C. Lee, Dynamic Fragmentation Process and Fragment Microstructure Evolution of Alumina Particles in a Vacuum Kinetic Spraying System, Scripta Mater., 2015, 108, p 72-75 (in English)

    CAS  Google Scholar 

  31. H. Kwon, Y. Kim, H. Park, S. Jeong, and C. Lee, Promotion of the Fragmentation and Densification for a Dense Vacuum Kinetic-Sprayed Y2O3 Coating by Heat-Treatment of Feedstock Powder, Ceram. Int., 2019, in press, (in English), https://doi.org/10.1016/j.ceramint.2019.12.149.

  32. A. Cooper and L. Eaton, Compaction Behavior of Several Ceramic Powders, J. Am. Ceram. Soc., 1962, 45(3), p 97-101 (in English)

    CAS  Google Scholar 

  33. S. Soga, K. Kondo, A. Sawaoka, and Y. Tanaka, Shock Compaction of TiN-TiC Powders, J. Mater. Sci., 1983, 2(11), p 673-674 (in English)

    CAS  Google Scholar 

  34. K. Kondo, S. Soga, A. Sawaoka, and M. Araki, Shock Compaction of Silicon Carbide Powder, J. Mater. Sci., 1985, 20(3), p 1033-1048 (in English)

    CAS  Google Scholar 

  35. M. Gallas, B. Hockey, A. Pechenik, and G. Piermarini, Fabrication of Transparent γ-Al2O3 from Nanosize Particles, J. Am. Ceram. Soc., 1994, 77(8), p 2107-2112 (in English)

    CAS  Google Scholar 

  36. M. Gallas, A. Rosa, T. Costa, and J. Jornada, High Pressure Compaction of Nanosize Ceramic Powders, J. Mater. Res., 1997, 12(3), p 764-768 (in English)

    CAS  Google Scholar 

  37. Y. Kawakami, S. Aisawa, and J. Akedo, Annealing Effect on 0.5Pb(Ni1/3Nb2/3)O3-0.5Pb(Zr0.3Ti0.7)O3 Thick Film Deposited By Aerosol Deposition Method, Jpn. J. Appl. Phys., 2005, 44, p 6934-6937 (in English)

    CAS  Google Scholar 

  38. J. Choi, K. Cho, J. Choi, J. Ryu, B. Hahn, J. Kim, C. Ahn, W. Yoon, J. Yun, and D. Park, Effects of Annealing Temperature on Solid Oxide Fuel Cells Containing (La, Sr)(Ga, Mg, Co)O3-δ Electrolyte Prepared by Aerosol Deposition, Mater. Lett., 2012, 70, p 44-47 (in English)

    CAS  Google Scholar 

  39. B. Kim, J. Lee, J. Kim, and T. Ikegami, Rapid Rate Sintering of Nanocrystalline Indium Tin Oxide Ceramics: Particle Size Effect, Mater. Lett., 2002, 52(1–2), p 114-119 (in English)

    CAS  Google Scholar 

  40. J. Borg, D. Chapman, K. Tsembelis, W. Proud, and J. Cogar, Dynamic Compaction of Porous Silica Powder, J. Appl. Phys., 2005, 98, p 073509 (in English)

    Google Scholar 

  41. Y. Han, J. Li, B. Chi, and Z. Wen, The Effect of Sintering Temperature on Porous Silica Composite Strength, J. Porous Mat., 2003, 10(1), p 41-45 (in English)

    CAS  Google Scholar 

  42. J. Maeng, K. Yoon, S. Choi, and H. Kim, The Effect of Sintering Temperature on the Synthesis of Quartz glass by Fumed Silica Sintering, J. Korean Powder Metall. Inst., 2013, 20(2), p 134-137 (in Korean)

    Google Scholar 

  43. Y. Liu, Y. Wang, X. Suo, Y. Gong, C. Li, and H. Li, Impact-Induced Bonding and Boundary Amorphization if TiN Ceramic Particles During Room Temperature Vacuum Cold Spray Deposition, Ceram. Int., 2016, 42, p 1640-1647 (in English)

    CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by World Class 300 Project R&D Support (www.worldclass300.or.kr) funded by the Small and Medium Business Administration (SMBA, Korea) [Project Name: Development of Plasma-Resistant Surface Treatment Technology for 3D-Structure and Large-Area Parts of Semiconductor/ Display Fabrication Equipment].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hansol Kwon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a special topical focus in the Journal of Thermal Spray Technology on Aerosol Deposition and Kinetic Spray Processes. This issue was organized by Dr. Kentaro Shinoda, National Institute of Advanced Industrial Science and Technology (AIST); Dr. Frank Gaertner, Helmut-Schmidt University; Prof. Changhee Lee, Hanyang University; Prof. Ali Dolatabadi, Concordia University; and Dr. Scooter Johnson, Naval Research Laboratory.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, H., Kim, Y., Park, H. et al. Impact Behavior for Successful Particle–Particle Bonding in Vacuum Kinetic Spraying. J Therm Spray Tech 30, 542–557 (2021). https://doi.org/10.1007/s11666-020-01078-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01078-7

Keywords

Navigation