Skip to main content
Log in

Numerical study of the hydrodynamics and heat transfer characteristics of gas–solid in a slit-less rotating fluidized bed in static geometry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A rotating fluidized bed in static geometry (RFB-SG) without slits is presented in this paper as a research objective. The concept of RFB-SG is highly beneficial in numerous industrial operations such as granular drying, particle coating, mixing, agglomeration, and combustion. In this study, a three-dimensional CFD model is developed using the commercial software ANSYS FLUENT 14.5, to investigate hydrodynamics and heat transfer characteristics of gas–solid in the vortex chamber. The analysis of the flow pattern of gas–solid and the prediction of fluidization capacity have been made, using appropriate parameters. The findings showed that the significant factors, such as inlet air velocity, solid-bed thickness, the volume fraction of solids, solids pressure, and heat transfer coefficient, influenced the reactor capacity. It is observed that the solid inventories of 300 and 500 g have been fluidized perfectly at inlet air velocities of 30 m s−1 and 44 m s−1, respectively. The overall operating and drying costs are found to be decreased due to the reduction in fluidization air requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

d p :

Particle mean diameter (m)

g :

Acceleration due to gravity (m s−2)

\(g_{\text{o,ss}}\) :

Radial distribution function

k :

Thermal conductivity (W m−1 K−1)

L c :

Characteristic length of the rectangular inlet (m)

Re :

Reynolds number (dimensionless)

T a :

Temperature of fluidization air (K)

T o :

Ambient temperature (K)

v a :

Velocity of the fluidizing air (m s−1)

v s :

Velocity of the solid (m s−1)

β :

Interphase momentum transfer coefficient (N s m−4)

\(\gamma_{{\uptheta{\text{s}}}}\) :

Dissipation of kinetic fluctuation energy (kg m s−3)

ε a :

Void fraction of air (dimensionless)

ε s :

Void fraction of solid (dimensionless)

ρ g :

Density of dry gas and solid (kg m−3)

ρ s :

Density of dry gas and solid (kg m−3)

μ g :

Dynamic viscosity of gas (Pa s)

μ s :

Dynamic viscosity of solid (Pa s)

μ s,,col. :

Collisional kinetic solids shear viscosity (kg m−1 s−1)

μ s,fric. :

Frictional solids viscosity (kg m−1 s−1)

\(\xi_{\text{s}}\) :

Solid bulk viscosity

\(\varphi\) :

Angle of initial fraction

References

  1. Weber JM, Stehle RC, Breault RW, De Wilde J. Experimental study of the application of rotating fluidized beds to particle separation. Powder Technol. 2017;316:123–30.

    Article  CAS  Google Scholar 

  2. Verma V, Li T, De Wilde J. Coarse-grained discrete particle simulations of particle segregation in rotating fluidized beds in vortex chambers. Powder Technol. 2017;318:282–92.

    Article  CAS  Google Scholar 

  3. Ashcraft RW, Heynderickx GJ, Marin GB. Modeling fast biomass pyrolysis in a gas–solid vortex reactor. Chem Eng J. 2012;207–208:195–208.

    Article  Google Scholar 

  4. Gonzalez-Quiroga A, Reyniers PA, Kulkarni SR, Torregrosa MM, Perreault P, Heynderickx GJ, et al. Design and cold flow testing of a Gas-Solid Vortex Reactor demonstration unit for biomass fast pyrolysis. Chem Eng J. 2017;329:198–210.

    Article  CAS  Google Scholar 

  5. Pati JR, Dutta S, Eliaers P, Mahanta P, Chatterjee PK, De Wilde J. Experimental study of paddy drying in a vortex chamber. Dry Technol. 2016;34:1073–84.

    Article  Google Scholar 

  6. Dvornikov NA. Combustion in vortex chambers with a fluidized particle bed. Combust Explos Shock Waves. 2015;51:631–40.

    Article  Google Scholar 

  7. Volchkov EP, Dvornikov NA, Lukashov VV, Borodulya VA, Teplitskii YS, Pitsukha EA. Study of swirling gas-dispersed flows in vortex chambers of various structures in the presence and absence of combustion. J Eng Phys Thermophys. 2012;85:856–66.

    Article  CAS  Google Scholar 

  8. Kozawa K, Seto T, Otani Y. Development of a spiral-flow jet mill with improved classification performance. Adv Powder Technol. 2012;23:601–6.

    Article  Google Scholar 

  9. Katz A, Kalman H. Preliminary experimental analysis of a spiral jet mill performance. Part Part Syst Charact. 2007;24:332–8.

    Article  Google Scholar 

  10. Abdollahi M, Guy C, Chaouki J. Biomass gassification in rotating fluidized bed. In: Engineering conferences international; 2010.

  11. Mohapatra SS, Mahanta P. Performance evaluation of quality drying in a natural convection grain dryer. Appl Mech Mater. 2012;110:2094–2100.

    Google Scholar 

  12. Raj AK, Srinivas M, Jayaraj S. CFD modeling of macro-encapsulated latent heat storage system used for solar heating applications. Int J Therm Sci. 2019;139:88–104.

    Article  Google Scholar 

  13. Raj AK, Srinivas M, Jayaraj S. A cost-effective method to improve the performance of solar air heaters using discrete macro-encapsulated PCM capsules for drying applications. Appl Therm Eng. 2019;146:910–20.

    Article  CAS  Google Scholar 

  14. Raj AK, Kunal G, Srinivas M, Jayaraj S. Performance analysis of a double-pass solar air heater system with asymmetric channel flow passages. J Therm Anal Calorim. 2019;136:21–38.

    Article  CAS  Google Scholar 

  15. Raj AK, Srinivas M, Saleel CA, Jayaraj S. Active drying of unripened bananas (Musa Nendra) in a multi-tray mixed-mode solar cabinet dryer with backup energy storage. Sol Energy. 2019;188:1002–12.

    Article  Google Scholar 

  16. Arun KR, Kunal G, Srinivas M, Kumar CSS, Mohanraj M, Jayaraj S. Drying of untreated Musa nendra and Momordica charantia in a forced convection solar cabinet dryer with thermal storage. Energy. 2020;192:116697.

    Article  Google Scholar 

  17. Li XT, Grace JR, Lim CJ, Watkinson AP, Chen HP, Kim JR. Biomass gasification in a circulating fluidized bed. Biomass Bioenergy. 2004;26:171–93.

    Article  CAS  Google Scholar 

  18. Klimanek A, Adamczyk W, Katelbach-Woźniak A, Węcel G, Szlęk A. Towards a hybrid Eulerian–Lagrangian CFD modeling of coal gasification in a circulating fluidized bed reactor. Fuel. 2015;152:131–7.

    Article  CAS  Google Scholar 

  19. Loha C, Chattopadhyay H, Chatterjee PK. Energy generation from fluidized bed gasification of rice husk. J Renew Sustain Energy. 2013;5:043111.

    Article  Google Scholar 

  20. Karmakar MK, Datta AB. Hydrodynamics of a dual fluidized bed gasifier. Adv Powder Technol. 2010;21:521–8.

    Article  CAS  Google Scholar 

  21. Chen YM. Fundamentals of a centrifugal fluidized bed. AIChE J. 1987;33:722–8.

    Article  CAS  Google Scholar 

  22. Watano S, Nakamura H, Hamada K, Wakamatsu Y, Tanabe Y, Dave RN, et al. Fine particle coating by a novel rotating fluidized bed coater. Powder Technol. 2004;141:172–6.

    Article  CAS  Google Scholar 

  23. Zhang W. A review of techniques for the process intensification of fluidized bed reactors. Chin J Chem Eng. 2009;17:688–702.

    Article  CAS  Google Scholar 

  24. de Wilde J, de Broqueville A. Rotating fluidized beds in static geometry: experimental proof of concept. AIChE J. 2007;53:793–810.

    Article  Google Scholar 

  25. Dutta A, Ekatpure RP, Heynderickx GJ, de Broqueville A, Marin GB. Rotating fluidized bed with a static geometry: guidelines for design and operating conditions. Chem Eng Sci. 2010;65:1678–93.

    Article  CAS  Google Scholar 

  26. Singh P, Kalita P, Mahanta P. Study of agricultural product drying in a rotating fluidized bed with static geometry. In: Post-harvest technology and value addition (vol I, issue I). College of Horticulture & Forestry, Central Agricultural University, Arunachal Pradesh, 2019. P. 1–8.

  27. Eliaers P, Ranjan Pati J, Dutta S, De Wilde J. Modeling and simulation of biomass drying in vortex chambers. Chem Eng Sci. 2015;123:648–64.

    Article  CAS  Google Scholar 

  28. Hardy B, De Wilde J, Winckelmans G. A penalization method for the simulation of weakly compressible reacting gas-particle flows with general boundary conditions. Comput Fluids. 2019;190:294–307.

    Article  CAS  Google Scholar 

  29. Dutta S, Loha C, Chatterjee PK, Kumar Sadhukhan A, Gupta P. Numerical investigation of gas-particle hydrodynamics in a vortex chamber fluidized bed. Adv Powder Technol. 2018;29:3357–67.

    Article  Google Scholar 

  30. Kulkarni SR, Vandewalle LA, Gonzalez-Quiroga A, Perreault P, Heynderickx GJ, Van Geem KM, Marin GB. Computational fluid dynamics-assisted process intensification study for biomass fast pyrolysis in a gas–solid vortex reactor. Energy Fuels. 2018;32:10169–83.

    Article  CAS  Google Scholar 

  31. Niyogi K, Torregrosa MM, Pantzali MN, Heynderickx GJ, Marin GB. Experimentally validated numerical study of gas–solid vortex unit hydrodynamics. Powder Technol. 2017;305:794–808.

    Article  CAS  Google Scholar 

  32. Lavrich Z, Wagner DR, Taie Z, Halliday D, Hagen CL. Chemical engineering research and design considerations for small scale rotating fluidized beds in static geometry with screens for fine particles. Chem Eng Res Des. 2018;137:89–100.

    Article  CAS  Google Scholar 

  33. Kuan M, Shakir Y, Mohanraj M, Belyayev Y, Jayaraj S, Kaltayev A. Numerical simulation of a heat pump assisted solar dryer for continental climates. Renew Energy. 2019;143:214–25.

    Article  Google Scholar 

  34. De Broqueville A, De Wilde J. Numerical investigation of gas-solid heat transfer in rotating fluidized beds in a static geometry. Chem Eng Sci. 2009;64:1232–48.

    Article  Google Scholar 

  35. Syamlal M, O’Brien TJ. Computer simulation of bubbles in a fluidized bed. AIChE Symp Ser. 1989;85(1):22–31.

    Google Scholar 

  36. Lun CKK, Savage SB, Jeffrey DJ, Chepurniy N. Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. J Fluid Mech. 1984;140:223–56.

    Article  Google Scholar 

  37. Gidaspow D. Continuum and kinetic theory descriptions. Multiphase flow in fluidization. New York: Academic Press; 1994.

    Google Scholar 

  38. Chapman S, Cowling TG. The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction, and diffusion in gases. Cambridge: Cambridge University Press; 1990.

    Google Scholar 

  39. Schaeffer DG. Instability in the evolution equations describing incompressible granular flow. J Differ Equ. 1987;66:19–50.

    Article  Google Scholar 

  40. Syamlal M, O’Brien TJ. Simulation of granular layer inversion in liquid fluidized beds. Int J Multiph Flow. 1988;14:473–81.

    Article  CAS  Google Scholar 

  41. Ogawa S, Umemura A, Oshima N. On the equations of fully fluidized granular materials. Z Angew Math Phys. 1980;31:483–93.

    Article  Google Scholar 

  42. Ahmadzadeh A, Arastoopour H, Teymour F, Strumendo M. Population balance equations’ application in rotating fluidized bed polymerization reactor. Chem Eng Res Des. 2008;86:329–43.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavitra Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Kalita, P. & Mahanta, P. Numerical study of the hydrodynamics and heat transfer characteristics of gas–solid in a slit-less rotating fluidized bed in static geometry. J Therm Anal Calorim 141, 2647–2656 (2020). https://doi.org/10.1007/s10973-020-10070-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10070-w

Keywords

Navigation