Skip to main content
Log in

Effect of design and operating parameters on thermal performance of low-temperature direct absorption solar collectors: a review

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Solar water heating is one of the most efficient solar technologies in the domestic sector. The most important component of the solar thermal systems is the solar collector, which converts solar radiation to useful thermal energy. There are many types of solar collectors, which are categorized based on the operating temperature (low, medium and high temperatures) or the working fluid (gas or liquid). One of the newest types of solar collectors is direct absorption solar collector in which solar radiation is absorbed through the working fluid, unlike other collectors that use the surface absorber or indirectly absorb the solar radiation. The common working fluid for DASC is the suspension of metal, metal oxide or carbon nanomaterials in solar common fluids (water, EG, PG and Therminol VP-1). In this review paper, the effect of design and operating parameters on the thermal performance of low-temperature direct absorption solar collector is summarized. Using the numerous studies done in this field, the efficiency enhancement of DASC by variation of the collector geometric properties, the flow properties (the flow rate and Reynolds number), the working fluid properties (the base fluid, the nanoparticle material and size, and the nanofluid concentration), and the collector design is identified. This paper also identifies the current challenges facing the direct absorption solar collectors and the future recommendations for developing and commercializing these collectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

c p :

Specific heat (J kg−1 K−1)

D :

Particle diameter (m)

f v :

Particle volume fraction (ppm)

G T :

Incident solar flux on tilted surface (W m−2)

K e :

Extinction coefficient (m−1)

L :

Length (m)

m :

Complex refractive index

\(\dot{m}\) :

Mass flowrate (kg s−1)

Q :

Total solar radiation heat flux (W m−2)

T :

Temperature (K)

W :

Width (m)

\(\theta\) :

Non-dimensional temperature difference

λ :

Wavelength (m)

a:

Ambient

in:

Inlet

max:

Maximum

References

  1. UN Environment and International Energy Agency. Towards a zero-emission, efficient, and resilient buildings and construction sector. Global Status Report. 2017.

  2. Cao X, Dai X, Liu J. Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade. Energy Build. 2016;128:198–213.

    Article  Google Scholar 

  3. Allouhi A, Fouih YE, Kousksou T, Jamil A, Zeraouli Y, Mourad Y. Energy consumption and efficiency in buildings: current status and future trends. J Clean Prod. 2015;109:118–30.

    Article  Google Scholar 

  4. Global Energy Assessment—toward a sustainable future. Cambridge University Press and the International Institute for Applied Systems Analysis, Cambridge, UK, and Laxenburg, Austria. 2012.

  5. Brini R, Amara M, Jemmali H. Renewable energy consumption, International trade, oil price and economic growth inter-linkages: the case of Tunisia. Renew Sustain Energy Rev. 2017;76:620–7.

    Article  Google Scholar 

  6. IRENA, IEA and REN21. Renewable energy policies in a time of transition. IRENA, OECD/IEA and REN21. 2018.

  7. Tiwari GN. Solar energy: fundamentals, design, modelling, applications. Oxford: Alpha Science Int’l Ltd; 2002.

    Google Scholar 

  8. Li ZS, Zhang GQ, Li DM, Zhou J, Li LJ, Li LX. Application and development of solar energy in building industry and its prospects in China. Energy Policy. 2007;35(8):4121–7.

    Article  Google Scholar 

  9. Chwieduk D. Solar energy in buildings: optimizing thermal balance for efficient heating and cooling. Cambridge: Academic Press; 2014.

    Google Scholar 

  10. Djongyang N, Tchinda R, Kapseu C. A review of solar technologies for buildings. Afr J Sci Technol Innov Dev. 2012;4(4):11–36.

    Google Scholar 

  11. Jaisankar S, Ananth J, Thulasi S, Jayasuthakar ST, Sheeba KN. A comprehensive review on solar water heaters. Renew Sustain Energy Rev. 2011;15(6):3045–50.

    Article  CAS  Google Scholar 

  12. Shukla R, Sumathy K, Erickson P, Gong J. Recent advances in the solar water heating systems: a review. Renew Sustain Energy Rev. 2013;19:173–90.

    Article  Google Scholar 

  13. Wang Z, Yang W, Qiu F, Zhang X, Zhao X. Solar water heating: from theory, application, marketing and research. Renew Sustain Energy Rev. 2015;2015(41):68–84.

    Article  Google Scholar 

  14. Jamar A, Majid ZAA, Azmi WH, Norhafana M, Razak AA. A review of water heating system for solar energy applications. Int Commun Heat Mass Transf. 2016;76:178–87.

    Article  Google Scholar 

  15. Lugo S, Morales LI, Best R, Gómez VH, García-Valladares O. Numerical simulation and experimental validation of an outdoor-swimming-pool solar heating system in warm climates. Sol Energy. 2019;189:45–56.

    Article  Google Scholar 

  16. Delgado Marín JP, Vera García F, García Cascales JR. Use of a predictive control to improve the energy efficiency in indoor swimming pools using solar thermal energy. Sol Energy. 2019;179:380–90.

    Article  Google Scholar 

  17. Gonçalves RS, Palmero-Marrero AI, Oliveira AC. Analysis of swimming pool solar heating using the utilizability method. Energy Rep. 2019;6(1):717–24.

    Google Scholar 

  18. Weiss W. Solar heating systems for houses, a design handbook for solar combisystems. London: James & James (Science Publishers); 2003.

    Book  Google Scholar 

  19. Andersen E, Furbo S. Theoretical comparison of solar water/space-heating combi systems and stratification design options. J Sol Energy Eng. 2007;129:438–48.

    Article  Google Scholar 

  20. Sustar JL, Burch J, Krarti M. Performance modeling comparison of a solar combisystem and solar water heater. J Sol Energy Eng. 2015;137:061001-1–7.

    Article  CAS  Google Scholar 

  21. Alobaid M, Hughes B, Kaiser Calautit J, O’Connor D, Heyes A. A review of solar driven absorption cooling with photovoltaic thermal systems. Renew Sustain Energy Rev. 2017;76:728–42.

    Article  Google Scholar 

  22. Bellos E, Tzivanidis C, Symeou C, Kimon A. Antonopoulos energetic, exergetic and financial evaluation of a solar driven absorption chiller—a dynamic approach. Energy Convers Manage. 2017;13:34–48.

    Article  CAS  Google Scholar 

  23. Shirazi A, Taylor RA, Morrison GL, White SD. Solar-powered absorption chillers: a comprehensive and critical review. Energy Convers Manage. 2018;171:59–81.

    Article  Google Scholar 

  24. Kalogirou SA. Solar energy engineering: processes and systems. 2nd ed. Cambridge: Academic Press; 2014.

    Google Scholar 

  25. Phelan P, Otanicar T, Taylor R, Tyagi H. Trends and opportunities in direct-absorption solar thermal collectors. J Therm Sci Eng Appl. 2013;5(2):021003-1–9.

    Article  CAS  Google Scholar 

  26. Bhatia SC. Advanced renewable energy systems. New Delhi: Woodhead Publishing India; 2014.

    Google Scholar 

  27. International Energy Agency (IEA). SHC-Task 26: solar combisystems in Austria, Denmark, Germany, France, Sweden, Switzerland, the Netherlands and the USA, Overview. 2000.

  28. Asaee SR, Ugursal VI, Beausoleil-Morrison I. Techno-economic study of solar combisystem retrofit in the Canadian housing stock. Sol Energy. 2016;125:426–43.

    Article  Google Scholar 

  29. Najera-Trejo M, Martin-Domínguez IR, Escobedo-Bretado JA. Economic feasibility of flat plate vs evacuated tube solar collectors in a combisystem. Energy Procedia. 2016;91:477–85.

    Article  Google Scholar 

  30. Budea S, Badescu V. Improving the performance of systems with solar water collectors used in domestic hot water production. Energy Procedia. 2017;112:398–403.

    Article  Google Scholar 

  31. Chopra K, Tyagi VV, Pandey AK, Sari A. Global advancement on experimental and thermal analysis of evacuated tube collector with and without heat pipe systems and possible applications. Appl Energy. 2018;228:351–89.

    Article  Google Scholar 

  32. Katsaprakakis D. Introducing a solar-combi system for hot water production and swimming pools heating in the Pancretan Stadium, Crete, Greece. Energy Procedia. 2019;159:174–9.

    Article  Google Scholar 

  33. Bataineh K, Taamneh Y. Review and recent improvements of solar sorption cooling systems. Energy Build. 2016;128:22–37.

    Article  Google Scholar 

  34. Allouhi A, Kousksou T, Jamil A, Bruel P, Mourad Y, Zeraouli Y. Solar driven cooling systems: an updated review. Renew Sustain Energy Rev. 2015;44:159–81.

    Article  Google Scholar 

  35. Mahesh A. Solar collectors and adsorption materials aspects of cooling system. Renew Sustain Energy Rev. 2017;73:1300–12.

    Article  CAS  Google Scholar 

  36. Sakoda A, Suzuki M. Simultaneous transportation of heat and adsorbate in closed type adsorption cooling system utilizing solar heat. J Sol Energy Eng. 1986;108:239–45.

    Article  CAS  Google Scholar 

  37. Henning H. Solar assisted air conditioning of buildings—an overview. Appl Therm Eng. 2007;27:1734–49.

    Article  CAS  Google Scholar 

  38. Bellos E, Tzivanidis E, Symeou C, Antonopoulos KA. Energetic, exergetic and financial evaluation of a solar driven absorption chille—a dynamic approach. Energy Convers Manage. 2017;137:34–48.

    Article  CAS  Google Scholar 

  39. Karami M, Delfani S, Noroozi A. Performance characteristics of a solar desiccant/M-cycle air-conditioning system for the buildings in hot and humid areas. Asian J Civil Eng. 2019;21:751–62.

    Article  Google Scholar 

  40. Delfani S, Karami M. Transient simulation of solar desiccant/M-Cycle cooling systems in three different climatic condition. J Build Eng. 2020;29:101152.

    Article  Google Scholar 

  41. Bellos E, Tzivanidis C. Optimum design of a solar ejector refrigeration system for various operating scenarios. Energy Convers Manage. 2017;154:11–24.

    Article  CAS  Google Scholar 

  42. Selimefendigil F, Oztop HF. Effects of nanoparticle shape on slot-jet impingement cooling of a corrugated surface with nanofluid. J Therm Sci Eng Appl. 2017;9(2):021016.

    Article  CAS  Google Scholar 

  43. Selimefendigil F, Oztop HF. Magnetic field effects on the forced convection of CuO-water nanofluid flow in a channel with circular cylinders and thermal predictions using ANFIS. Int J Mech Sci. 2018;146:9–24.

    Article  Google Scholar 

  44. Chamkha AJ, Selimefendigil F, Oztop HF. Effects of a rotating cone on the mixed convection in a double lid-driven 3D porous trapezoidal nanofluid filled cavity under the impact of magnetic field. Nanomaterials. 2020;10(3):449.

    Article  CAS  PubMed Central  Google Scholar 

  45. Selimefendigil F, Oztop HF. Forced convection in a branching channel with partly elastic walls and inner L-shaped conductive obstacle under the influence of magnetic field. Int J Heat Mass Transf. 2019;144:118598.

    Article  Google Scholar 

  46. Selimefendigil F, Oztop HF. Magnetohydrodynamics forced convection of nanofluid in multi-layered U-shaped vented cavity with a porous region considering wall corrugation effects. Int Commun Heat Mass Transf. 2020;113:104551.

    Article  CAS  Google Scholar 

  47. Selimefendigil F, Oztop HF. Al2O3-water nanofluid jet impingement cooling with magnetic field. Heat Transf Eng. 2020;41(1):50–64.

    Article  CAS  Google Scholar 

  48. Borode A, Ahmed N, Olubambi P. A review of solar collectors using carbon-based nanofluids. J Clean Prod. 2019;241:118311.

    Article  CAS  Google Scholar 

  49. Hussein AK. Applications of nanotechnology to improve the performance of solar collectors—recent advances and overview. Renew Sustain Energy Rev. 2016;2:767–92.

    Article  Google Scholar 

  50. Farhana K, Kadirgama K, Rahman MM, Ramasamy D, Noor MM, Najafi G, Samykano M, Mahamude ASF. Improvement in the performance of solar collectors with nanofluids—a state-of-the-art review. Nano-Struct Nano-Obj. 2019;18:100276.

    Article  CAS  Google Scholar 

  51. Bayrak F, Oztop HF, Selimefendigil F. Effects of different fin parameters on temperature and efficiency for cooling of photovoltaic panels under natural convection. Sol Energy. 2019;188:484–94.

    Article  Google Scholar 

  52. Chamkha AJ, Selimefendigil F. Numerical analysis for thermal performance of a photovoltaic thermal solar collector with SiO2–water nanofluid. Appl Sci. 2018;8(11):2223.

    Article  CAS  Google Scholar 

  53. Bayrak F, Oztop HF, Selimefendigil F. Experimental study for the application of different cooling techniques in photovoltaic (PV) panels. Energy Convers Manag. 2020;212:112789.

    Article  CAS  Google Scholar 

  54. Otanicar TP, Phelan PE, Golden JS. Optical properties of liquids for direct absorption solar thermal energy systems. Sol Energy. 2009;83:969–77.

    Article  CAS  Google Scholar 

  55. Raj P, Subudhi S. A review of studies using nanofluids in flat-plate and direct absorption solar collectors. Renew Sustain Energy Rev. 2018;84:54–74.

    Article  CAS  Google Scholar 

  56. Rasih RA, Sidik NZC, Samion S. Recent progress on concentrating direct absorption solar collector using nanofluids. J Therm Anal Calorim. 2019;137(3):903–22.

    Article  CAS  Google Scholar 

  57. Goel N, Taylor RA, Otanicar T. A review of nanofluid-based direct absorption solar collectors: design considerations and experiments with hybrid PV/thermal and direct steam generation collectors. Renew Energy. 2020;145:903–13.

    Article  CAS  Google Scholar 

  58. Gorji TB, Ranjbar AA. A review on optical properties and application of nanofluids in direct absorption solar collectors (DASCs). Renew Sustain Energy Rev. 2017;72:10–32.

    Article  CAS  Google Scholar 

  59. Chamsa-ard W, Brundavanam S, Fung CC, Fawcett D, Poinern G. Nanofluid types, their synthesis, properties and incorporation in direct solar thermal collectors: a review. Nanomaterials. 2017;7:131.

    Article  PubMed Central  CAS  Google Scholar 

  60. Bhalla V, Tyagi H. Parameters influencing the performance of nanoparticles-laden fluid-based solar thermal collectors: a review on optical properties. Renew Sustain Energy Rev. 2018;84:12–42.

    Article  CAS  Google Scholar 

  61. Tyagi H, Phelan P, Prasher R. Predicted efficiency of a low temperature nanofluid-based direct absorption solar collector. J Solar Energy Eng. 2009;131(4):1–7.

    Article  CAS  Google Scholar 

  62. Bhalla V, Khullar V, Tyagi H. Investigation of factors influencing the performance of nanofluid based direct absorption solar collector using Taguchi method. J Therm Anal Calorim. 2019;135:1493–505.

    Article  CAS  Google Scholar 

  63. Sharaf OZ, Al-Khateeb AN, Kyritsis DC, Abu-Nada E. Energy and exergy analysis and optimization of low-flux direct absorption solar collectors (DASCs): balancing power- and temperature-gain. Renew Energy. 2019;133:861–72.

    Article  Google Scholar 

  64. Chen M, He Y, Zhu J, Wen D. Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors. Appl Energy. 2016;181:65–74.

    Article  CAS  Google Scholar 

  65. Gorji TB, Ranjbar AA. Geometry optimization of a nanofluid-based direct absorption solar collector using response surface methodology. Sol Energy. 2015;122:314–25.

    Article  Google Scholar 

  66. Duan H, Tang L, Zheng Y, Xu C. Effect of plasmonic nanoshell-based nanofluid on efficiency of direct solar thermal collector. Appl Therm Eng. 2018;133:188–93.

    Article  CAS  Google Scholar 

  67. Sharaf OZ, Kyritsisa DC, Al-Khateebb AN, Abu-Nada E. Effect of bottom surface optical boundary conditions on nanofluid-based DASC: parametric study and optimization. Sol Energy. 2018;164:210–23.

    Article  CAS  Google Scholar 

  68. Delfani S, Esmaeili M, Karami M. Application of artificial neural network for performance prediction of a nanofluid-based direct absorption solar collector. Sustain Energy Technol Assess. 2019;36:100559.

    Google Scholar 

  69. Sani E, Mercatelli L, Barison S, Pagura C, Agresti F, Colla L, Sansoni P. Potential of carbon nanohorn-based suspensions for solar thermal collectors. Sol Energy Mater Sol Cells. 2011;95:2994–3000.

    Article  CAS  Google Scholar 

  70. Cregan V, Myers TG. Modelling the efficiency of a nanofluid direct absorption solar collector. Int J Heat Mass Transf. 2015;90:505–14.

    Article  Google Scholar 

  71. Otanicar TP, Phelan PE, Prasher RS, Rosengarten G, Taylor RA. Nanofluid-based direct absorption solar collector. J Renew Sustain Energy. 2010;2:033102.

    Article  CAS  Google Scholar 

  72. Gorji TB, Ranjbar AA. A numerical and experimental investigation on the performance of a low-flux direct absorption solar collector (DASC) using graphite, magnetite and silver nanofluids. Sol Energy. 2016;135:493–505.

    Article  CAS  Google Scholar 

  73. Karami M, Bozorgi M, Delfani S, Akhavan-Behabadi MA. Empirical correlations for heat transfer in a silver nanofluid-based direct absorption solar collector. Sustain Energy Technol Assess. 2018;28:14–21.

    Google Scholar 

  74. Bozorgi M, Karami M, Delfani S. Energy and exergy analysis of direct absorption solar collector by using silver nanofluid. Modares Mech Eng. 2018;18(4):814–22 (in Persian).

    Google Scholar 

  75. Sharaf OZ, Kyritsis DC, Abu-Nada E. Impact of nanofluids, radiation spectrum, and hydrodynamics on the performance of direct absorption solar collectors. Energy Convers Manage. 2018;156:706–22.

    Article  CAS  Google Scholar 

  76. Parvin S, Nasrin R, Alim MA. Heat transfer and entropy generation through nanofluid filled direct absorption solar collector. Int J Heat Mass Transf. 2014;71:386–95.

    Article  CAS  Google Scholar 

  77. Turkyilmazoglu M. Performance of direct absorption solar collector with nanofluid mixture. Energy Convers Manage. 2016;114:1–10.

    Article  CAS  Google Scholar 

  78. Gupta HK, Agrawal GD, Mathur J. Investigations for effect of Al2O3–H2O nanofluid flowrate on the efficiency of direct absorption solar collector. Case Stud Therm Eng. 2015;5:70–8.

    Article  Google Scholar 

  79. Gupta HK, Agrawal GD, Mathur J. An experimental investigation of a low temperature Al2O3–H2O nanofluid based direct absorption solar collector. Sol Energy. 2015;118:390–6.

    Article  CAS  Google Scholar 

  80. Khatri R, Jiyani R, Kumar M. An experimental investigation on direct absorption solar collector using TiO2–water nanofluid. In: 2nd international conference on green energy and applications (ICGEA). 2018.

  81. Karami M, Akhavan-Bahabadi MA, Delfani S, Raisee M. Experimental investigation of CuO nanofluid-based direct absorption solar collector for residential applications. Renew Sustain Energy Rev. 2015;52:793–801.

    Article  CAS  Google Scholar 

  82. Jyani L, Singh M, Bohra S. Effect of volume concentration on direct absorption solar collector in laminar and turbulent flow using CuO–H2O nanofluids. Int J Eng Dev Res. 2017;5(4):268–72.

    Google Scholar 

  83. Gorji TB, Ranjbar AA. Thermal and exergy optimization of a nanofluid-based direct absorption solar collector. Renew Energy. 2017;106:274–87.

    Article  CAS  Google Scholar 

  84. Karami M, Hosseini Pakdel SM, Delfani S, Akhavan-Behabadi MA. Application of Fe3O4/silica hybrid nanofluid as working fluid of direct absorption solar collector. Modares Mech Eng. 2018;18(2):37–44 (in Persian).

    Google Scholar 

  85. Karami M. Experimental investigation of first and second laws in a direct absorption solar collector using hybrid Fe3O4/SiO2 nanofluid. J Therm Anal Calorim. 2019;136:661–71.

    Article  CAS  Google Scholar 

  86. Sharaf OZ, Al-Khateeb AN, Kyritsis DC, Abu-Nada E. Direct absorption solar collector (DASC) modeling and simulation using a novel Eulerian–Lagrangian hybrid approach: optical, thermal, and hydrodynamic interactions. Appl Energy. 2018;231:1132–45.

    Article  Google Scholar 

  87. Delfani S, Karami M, Akhavan-Behabadi MA. Performance characteristics of a residential-type direct absorption solar collector using MWCNT nanofluid. Renew Energy. 2016;87:754–64.

    Article  CAS  Google Scholar 

  88. Vakili M, Hosseinalipour SM, Delfani S, Khosrojerdi S, Karami M. Experimental investigation of graphene nanoplatelets nanofluid-based volumetric solar collector for domestic hot water systems. Sol Energy. 2016;131:119–30.

    Article  CAS  Google Scholar 

  89. Khosrojerdi S, Mirabdolah Lavasani A, Delfani S. An experimental analysis of the effect of graphene oxide nanoplatelets/deionized water on the direct absorption solar collector performanc. AUT J Mech Eng. 2019;3(1):43–52.

    Google Scholar 

  90. Karami M, Asghari B, Delfani S, Akhavan-Behabadi MA. Potential of nanodiamond/water nanofluid as working fluid of volumetric solar collectors. J Sol Energy Res. 2017;23:71–8.

    Google Scholar 

  91. Karami M, Raisee M, Delfani S. Numerical investigation of nanofluid-based solar collectors. IOP Conf Ser: Mater Sci Eng. 2014;64:012044.

    Article  CAS  Google Scholar 

  92. Ladjevardi SM, Asnaghi A, Izadkhast PS, Kashani AH. Applicability of graphite nanofluids in direct solar energy absorption. Sol Energy. 2013;94:327–34.

    Article  CAS  Google Scholar 

  93. Das PK, Santra AK, Ganguly R. Performance analysis of direct absorption solar collector using multiphase model. In: Proceedings of the 23rd national heat and mass transfer conference and 1st international ISHMT-ASTFE heat and mass transfer conference IHMTC2015. 2015.

  94. Hatami M, Mosayebidorcheh S, Jing D. Thermal performance evaluation of alumina-water nanofluid in an inclined direct absorption solar collector (IDASC) using numerical method. J Mol Liq. 2017;231:632–9.

    Article  CAS  Google Scholar 

  95. Delfani S, Karami M, Akhavan Bahabadi MA. Experimental investigation on performance comparison of nanofluid based direct absorption and flat plate solar collectors. Int J Nano Dimens. 2016;7(1):85–96.

    CAS  Google Scholar 

  96. Minardi JE, Chunag HN. Performance of a black liquid flat plate solar collector. Sol Energy. 1975;17:179–83.

    Article  Google Scholar 

  97. Thermal solar systems and components—solar collectors—part 2: test methods. English version of DIN EN 12975-2: 2006-06.

  98. Filho EPB, Mendoza OSH, Beicker CLL, Menezes A, Wen D. Experimental investigation of a silver nanoparticle-based direct absorption solar thermal system. Energy Convers Manage. 2014;84:261–7.

    Article  CAS  Google Scholar 

  99. Hatami M, Jing D. Evaluation of wavy direct absorption solar collector (DASC) performance using different nanofluids. J Mol Liq. 2017;229:203–11.

    Article  CAS  Google Scholar 

  100. Hatami M, Jing D. Optimization of wavy direct absorber solar collector (WDASC) using Al2O3–water nanofluid and RSM analysis. Appl Therm Eng. 2017;121:1040–50.

    Article  CAS  Google Scholar 

  101. Siavashi M, Ghasemi K, Yousofvand R, Derakhshan S. Computational analysis of SWCNH nanofluid-based direct absorption solar collector with a metal sheet. Sol Energy. 2018;170:252–62.

    Article  CAS  Google Scholar 

  102. Karami M, Delfani S, Esmaeili M. Effect of V-shaped rib roughness on the performance of nanofluid based direct absorption solar collectors. J Therm Anal Calorim. 2019;138:559–72.

    Article  CAS  Google Scholar 

  103. Moradi A, Sani E, Simonetti M, Francini F, Chiavazzo E, Asinari P. Carbon-nanohorn based nanofluids for a direct absorption solar collector for civil application. J Nanosci Nanotechnol. 2015;15:3488–95.

    Article  CAS  PubMed  Google Scholar 

  104. Simonetti M, Restagno F, Sani E, Noussan M. Numerical investigation of direct absorption solar collectors (DASC), based on carbon-nanohorn nanofluids, for low temperature applications. Sol Energy. 2019;195:166–75.

    Article  CAS  Google Scholar 

  105. Esmaeili M, Karami M, Delfani S. Performance enhancement of a direct absorption solar collector using copper oxide porous foam and nanofluid. Int J Energy Res. 2020;44:5527–44.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Karami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karami, M., Bozorgi, M. & Delfani, S. Effect of design and operating parameters on thermal performance of low-temperature direct absorption solar collectors: a review. J Therm Anal Calorim 146, 993–1013 (2021). https://doi.org/10.1007/s10973-020-10043-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10043-z

Keywords

Navigation