Skip to main content
Log in

Self-association process of tetracycline antibiotic in different aqueous solutions: a joint experimental study and molecular dynamics simulation

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Tetracycline is one of the most commonly used antibiotics in a wide range of antibacterial drugs. Self-association of drugs (e.g. antibiotics) causes problems, such as increasing toxicity and reducing penetration of drugs through cell membranes. In this study, the self-association process of tetracycline was investigated experimentally and theoretically in aqueous, ethanol, and salt solutions. Spectroscopy studies showed that the self-association process occurred in salt solution at lower concentrations of tetracycline in comparison with the other two solutions. However, the presence of ethanol led to a delay in the self-association process. The self-association constants of tetracycline were obtained by using experimental values. Moreover, the analysis of the number of clusters and solvent accessible surface area were carried out by molecular dynamics (MD) simulations. The MD results clarified that the tetracycline self-association process happened earlier in salt solution compared to the others through forming the larger clusters by the hydrophobic interactions, whereas the presence of ethanol caused a reduction in the self-association process and the cluster populations through weakening the hydrophobic interactions. Furthermore, the type of the involved interactions in the formation of the tetracycline clusters was investigated by RDG analysis. The obtained results revealed that van der Waals interactions possessed a fundamental influence on the formation of tetracycline clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Qi, C. Tu, Y. Dai, W. Wang, A. Wang, J. Chen, Anal. Methods 10, 3402 (2018)

    CAS  Google Scholar 

  2. A.A. Borghi, M.S.A. Palma, Braz. J. Pharm. Sci. 50, 25 (2014)

    CAS  Google Scholar 

  3. W. Ma, S. Li, L. Chen, J. Sun, Y. Yan, J. Iran. Chem. Soc. 14, 209 (2017)

    CAS  Google Scholar 

  4. A. Aleksandrov, T. Simonson, J. Am. Chem. Soc. 130, 1114 (2008)

    CAS  PubMed  Google Scholar 

  5. J. Sun, J. Dai, W. Ma, L. Gao, A. Xie, J. He, Z. Zhou, C. Li, Y. Yan, J. Iran. Chem. Soc. 13, 489 (2016)

    CAS  Google Scholar 

  6. E. Michalova, P. Novotna, J. Schlegelova, Vet. Med. 49, 79 (2004)

    CAS  Google Scholar 

  7. L. Ge, H. Li, X. Du, M. Zhu, W. Chen, T. Shi, N. Hao, Q. Liu, K. Wang, Biosens. Bioelectron. 111, 131 (2018)

    CAS  PubMed  Google Scholar 

  8. Y. Li, S. Wang, Y. Zhang, R. Han, W. Wei, J. Mol. Liq. 247, 171 (2017)

    CAS  Google Scholar 

  9. S. Nasseri, A.H. Mahvi, M. Seyedsalehi, K. Yaghmaeian, R. Nabizadeh, M. Alimohammadi, G.H. Safari, J. Mol. Liq. 241, 704 (2017)

    CAS  Google Scholar 

  10. M. Khodadadi, M. Ehrampoush, M. Ghaneian, A. Allahresani, A. Mahvi, J. Mol. Liq. 255, 224 (2018)

    CAS  Google Scholar 

  11. X. Liu, T. Wang, W. Wang, Z. Zhou, Y. Yan, J. Ind. Eng. Chem. 72, 100 (2019)

    CAS  Google Scholar 

  12. J.A.O. Granados, P. Thangarasu, N. Singh, J.M. Vázquez-Ramos, Food Chem. 278, 523 (2019)

    CAS  PubMed  Google Scholar 

  13. I. Chopra, M. Roberts, Microbiol. Mol. Biol. Rev. 65, 232 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. D. Fuoco, Antibiotics 1, 1 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. X. Zhao, F. Pan, H. Xu, M. Yaseen, H. Shan, C.A. Hauser, S. Zhang, J.R. Lu, Chem. Soc. Rev. 39, 3480 (2010)

    CAS  PubMed  Google Scholar 

  16. F. Moghaddasi, M.R. Housaindokht, M. Darroudi, M.R. Bozorgmehr, A. Sadeghi, J. Mol. Liq. 264, 242 (2018)

    CAS  Google Scholar 

  17. C. Ren, J. Zhang, M. Chen, Z. Yang, Chem. Soc. Rev. 43, 7257 (2014)

    CAS  PubMed  Google Scholar 

  18. G.M. Whitesides, M. Boncheva, Proc. Natl. Acad. Sci. 99, 4769 (2002)

    CAS  PubMed  Google Scholar 

  19. T. Kang, K. Um, J. Park, H. Chang, D.C. Lee, C.-K. Kim, K. Lee, Sens. Actuators B Chem. 222, 871 (2016)

    CAS  Google Scholar 

  20. B. Morel, L. Varela, A.I. Azuaga, F. Conejero-Lara, Biophys. J. 99, 3801 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. C.-Y. Yu, W. Huang, Z.-P. Li, X.-Y. Lei, D.-X. He, L. Sun, Curr. Top. Med. Chem. 16, 281 (2016)

    CAS  PubMed  Google Scholar 

  22. J.H. Collier, T. Segura, Biomaterials 32, 4198 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. K. Subramani, A. Khraisat, A. George, Curr. Nanosci. 4, 201 (2008)

    CAS  Google Scholar 

  24. Y. Kievsky, I. Sokolov, IEEE. Trans. Nanotechnol. 4, 490 (2005)

    Google Scholar 

  25. M. Rycenga, J.M. McLellan, Y. Xia, Adv. Mater. 20, 2416 (2008)

    CAS  Google Scholar 

  26. N. Ramachandran, E. Hainsworth, B. Bhullar, S. Eisenstein, B. Rosen, A.Y. Lau, J.C. Walter, J. LaBaer, Science 305, 86 (2004)

    CAS  PubMed  Google Scholar 

  27. R. Chakrabarty, P.S. Mukherjee, P.J. Stang, Chem. Rev. 111, 6810 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. M. Inagaki, Y. Yang, F. Kang, Adv. Mater. 24, 2547 (2012)

    CAS  PubMed  Google Scholar 

  29. S. Sun, Adv. Mater. 18, 393 (2006)

    CAS  Google Scholar 

  30. J.A. Pelesko, Self Assembly: The Science of Things that Put Themselves Together (Chapman and Hall/CRC, Boca Raton, 2007)

    Google Scholar 

  31. P. Legrand, E.A. Romero, B.E. Cohen, J. Bolard, Antimicrob. Agents Chemother. 36, 2518 (1992)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. V. Sathish, A. Ramdass, Z.-Z. Lu, M. Velayudham, P. Thanasekaran, K.-L. Lu, S. Rajagopal, J. Phys. Chem. B. 117, 14358 (2013)

    CAS  PubMed  Google Scholar 

  33. D. Veselkov, A. Lantushenko, D. Davies, A. Veselkov, Russ. J. Bioorg. Chem. 28, 342 (2002)

    CAS  Google Scholar 

  34. M. Gagos, M. Arczewska, W.I. Gruszecki, J. Phys. Chem. B. 115, 5032 (2011)

    CAS  PubMed  Google Scholar 

  35. M.L. Nelson, S.B. Levy, Ann. N. Y. Acad. Sci. 1241, 17 (2011)

    CAS  PubMed  Google Scholar 

  36. G. Lantzsch, H. Binder, H. Heerklotz, P. Welzel, G. Klose, Langmuir 14, 4095 (1998)

    CAS  Google Scholar 

  37. L. Dmitrenko, E. Vulikh, G.V. Samsonov, Russ. Chem. Bull. 21, 702 (1972)

    Google Scholar 

  38. M. Gagos, M. Arczewska, J. Phys. Chem. B. 115, 3185 (2011)

    CAS  PubMed  Google Scholar 

  39. A.N. Rissanou, E. Georgilis, E. Kasotakis, A. Mitraki, V. Harmandaris, J. Phys. Chem. B. 117, 3962 (2013)

    CAS  PubMed  Google Scholar 

  40. A. Abraha, A. Gholap, A. Belay, Int. J. Biophys. 6, 16 (2016)

    Google Scholar 

  41. V. Devarajan, V. Ravichandran, Int. J. Compr. Pharm. 2, 1 (2011)

    Google Scholar 

  42. W.F. van Gunsteren, J. Dolenc, A.E. Mark, Curr. Opin. Struct. Biol. 18, 149 (2008)

    PubMed  Google Scholar 

  43. J. Starzyk, M. Gruszecki, K. Tutaj, R. Luchowski, R. Szlazak, P. Wasko, W. Grudzinski, J. Czub, W.I. Gruszecki, J. Phys. Chem. B. 118, 13821 (2014)

    CAS  PubMed  Google Scholar 

  44. J. Zielińska, M. Wieczór, T. Bączek, M. Gruszecki, J. Czub, Sci. Rep. 6, 19109 (2016)

    PubMed  PubMed Central  Google Scholar 

  45. A.V. Solomonov, Y.S. Marfin, E.V. Rumyantsev, E. Ragozin, T.S. Zahavi, G. Gellerman, A.B. Tesler, F. Muench, A. Kumagai, A. Miyawaki, Mater. Sci. Eng. C 99, 794 (2019)

    CAS  Google Scholar 

  46. K. Ariga, M. Nishikawa, T. Mori, J. Takeya, L.K. Shrestha, J.P. Hill, Sci. Technol. Adv. Mater. 20, 51 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Z. Chi, R. Liu, H. Yang, H. Shen, J. Wang, PLoS ONE 6, e28361 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. M. Mukherjee, P.S. Sardar, S.K. Ghorai, S.K. Samanta, A.S. Roy, S. Dasgupta, S. Ghosh, PLoS ONE 8, e60940 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  49. M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess, E. Lindahl, SoftwareX. 1, 19 (2015)

    Google Scholar 

  50. A. Aleksandrov, T. Simonson, J. Comput. Chem. 30, 243 (2009)

    CAS  PubMed  Google Scholar 

  51. A. Aleksandrov, T. Simonson, J. Comput. Chem. 27, 1517 (2006)

    CAS  PubMed  Google Scholar 

  52. K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, J. Comput. Chem. 31, 671 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  53. K. Vanommeslaeghe, A. MacKerell Jr., Biochim. Biophys. Acta 1850, 861 (2015)

    CAS  PubMed  Google Scholar 

  54. V. Zoete, M.A. Cuendet, A. Grosdidier, O. Michielin, J. Comput. Chem. 32, 2359 (2011)

    CAS  PubMed  Google Scholar 

  55. P. Mark, L. Nilsson, J. Phys. Chem. A 105, 9954 (2001)

    CAS  Google Scholar 

  56. R. Fletcher, M.J. Powell, Comput. J. 6, 163 (1963)

    Google Scholar 

  57. G. Bussi, D. Donadio, M. Parrinello, J. Chem. Phys. 126, 014101 (2007)

    PubMed  Google Scholar 

  58. H.J. Berendsen, J.V. Postma, W.F. van Gunsteren, A. DiNola, J. Haak, J. Chem. Phys. 81, 3684 (1984)

    CAS  Google Scholar 

  59. B. Hess, H. Bekker, H.J. Berendsen, J.G. Fraaije, J. Comput. Chem. 18, 1463 (1997)

    CAS  Google Scholar 

  60. U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, J. Chem. Phys. 103, 8577 (1995)

    CAS  Google Scholar 

  61. T. Lu, F. Chen, J. Comput. Chem. 33, 580 (2012)

    PubMed  Google Scholar 

  62. W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14, 33 (1996)

    CAS  PubMed  Google Scholar 

  63. Q. Zia, A.A. Khan, Z. Swaleha, M. Owais, Int. J. Nanomed. 10, 1769 (2015)

    CAS  Google Scholar 

  64. T. Casalini, M. Salvalaglio, G. Perale, M. Masi, C. Cavallotti, J. Phys. Chem. B 115, 12896 (2011)

    CAS  PubMed  Google Scholar 

  65. B. Hemmateenejad, G. Absalan, M. Hasanpour, J. Iran. Chem. Soc. 8, 166 (2011)

    CAS  Google Scholar 

  66. S. Lahiri, T. Takao, P.G. Devi, S. Ghosh, A. Ghosh, A. Dasgupta, D. Dasgupta, Biometals 25, 435 (2012)

    CAS  PubMed  Google Scholar 

  67. H. Dezhampanah, A.-K. Bordbar, S. Tangestaninejad, J. Iran. Chem. Soc. 6, 686 (2009)

    CAS  Google Scholar 

  68. P.S. Pourhosseini, R. Amani, A.A. Saboury, F. Najafi, M. Imani, J. Iran. Chem. Soc. 11, 467 (2014)

    CAS  Google Scholar 

  69. S.K. Panigrahi, A.K. Mishra, J. Photochem. Photobiol. C Photochem. Rev. 41, 100318 (2019)

    Google Scholar 

  70. F.S. Mohseni-Shahri, M.R. Housaindokht, M.R. Bozorgmehr, A.A. Moosavi-Movahedi, J. Solut. Chem. 45, 265 (2016)

    CAS  Google Scholar 

  71. R. Kovach, W. Peterson, Am. Lab. 26, 32G (1994)

    CAS  Google Scholar 

  72. X. Ma, R. Sun, J. Cheng, J. Liu, F. Gou, H. Xiang, X. Zhou, J. Chem. Educ. 93, 345 (2015)

    Google Scholar 

  73. P.-C. Wu, C.-Y. Chen, C.-W. Chang, New J. Chem. 42, 3459 (2018)

    CAS  Google Scholar 

  74. L. Le Bras, K. Chaitou, S. Aloïse, C. Adamo, A. Perrier, Phys. Chem. Chem. Phys. 21, 46 (2019)

    Google Scholar 

  75. Y. Huang, J. Xing, Q. Gong, L.-C. Chen, G. Liu, C. Yao, Z. Wang, H.-L. Zhang, Z. Chen, Q. Zhang, Nat. Commun. 10, 169 (2019)

    PubMed  PubMed Central  Google Scholar 

  76. E. Kokkoli, C.F. Zukoski, J. Colloid Interface Sci. 209, 60 (1999)

    CAS  PubMed  Google Scholar 

  77. D. Oakenfull, D. Fenwick, J. Phys. Chem. 78, 1759 (1974)

    CAS  Google Scholar 

  78. A. Bahadur, S. Cabana-Montenegro, V.K. Aswal, E.V. Lage, I. Sandez-Macho, A. Concheiro, C. Alvarez-Lorenzo, P. Bahadur, Int. J. Pharm. 494, 453 (2015)

    CAS  PubMed  Google Scholar 

  79. M.B. Hillyer, B.C. Gibb, Annu. Rev. Phys. Chem. 67, 307 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  80. A. Belay, Int. J. Phys. Sci. 5, 459 (2010)

    CAS  Google Scholar 

  81. A. Abraha, A. Gholap, A. Belay, Int. J. Phys. Sci. 11, 269 (2016)

    CAS  Google Scholar 

  82. A. Ebrahim-Habibi, D. Morshedi, N. Rezaei-Ghaleh, M. Sabbaghian, M. Nemat-Gorgani, J. Iran. Chem. Soc. 7, 521 (2010)

    CAS  Google Scholar 

  83. J. Dearden, Can. J. Chem. 41, 2683 (1963)

    CAS  Google Scholar 

  84. I. Sasselli, I. Moreira, R. Ulijn, T. Tuttle, Organ. Biomol. Chem. 15, 6541 (2017)

    CAS  Google Scholar 

  85. W.C. Swope, H.C. Andersen, P.H. Berens, K.R. Wilson, J. Chem. Phys. 76, 637 (1982)

    CAS  Google Scholar 

  86. S. Marrink, D. Tieleman, A. Mark, J. Phys. Chem. B. 104, 12165 (2000)

    CAS  Google Scholar 

  87. T. Ikeshoji, B.R. Hafskjold, Y. Hashi, Y. Kawazoe, J. Chem. Phys. 105, 5126 (1996)

    CAS  Google Scholar 

  88. S. Ahmadi, T. Heidelberg, J. Iran. Chem. Soc. 14, 65 (2017)

    CAS  Google Scholar 

  89. R. Behjatmanesh-Ardakani, J. Iran. Chem. Soc. 10, 379 (2013)

    Google Scholar 

  90. L. Ratke, P.W. Voorhees, Growth and Coarsening: Ostwald Ripening in Material Processing (Springer, Berlin, 2013)

    Google Scholar 

  91. J. Contreras-García, E.R. Johnson, S. Keinan, R. Chaudret, J.-P. Piquemal, D.N. Beratan, W. Yang, J. Chem. Theory Comput. 7, 625 (2011)

    PubMed  PubMed Central  Google Scholar 

  92. A. Mehranfar, M. Izadyar, A.N. Shamkhali, J. Mol. Liq. 288, 111085 (2019)

    Google Scholar 

  93. M. Khavani, M. Izadyar, M.R. Housaindokht, J. Iran. Chem. Soc. 16, 2389 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the Food and Drug Laboratory Research Center, Food and Drug Organization, Iranian Ministry of Health and Medical Education for the financial supports (Grant No. Pr976801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Housaindokht.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 7460 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabavi, M., Housaindokht, M.R., Bozorgmehr, M.R. et al. Self-association process of tetracycline antibiotic in different aqueous solutions: a joint experimental study and molecular dynamics simulation. J IRAN CHEM SOC 17, 2997–3007 (2020). https://doi.org/10.1007/s13738-020-01977-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-020-01977-0

Keywords

Navigation