Skip to main content
Log in

A Constrained Interval-Valued Linear Regression Model: A New Heteroscedasticity Estimation Method

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

Linear regression models for interval-valued data have been widely studied. Most literatures are to split an interval into two real numbers, i.e., the left- and right-endpoints or the center and radius of this interval, and fit two separate real-valued or two dimension linear regression models. This paper is focused on the bias-corrected and heteroscedasticity-adjusted modeling by imposing order constraint to the endpoints of the response interval and weighted linear least squares with estimated covariance matrix, based on a generalized linear model for interval-valued data. A three step estimation method is proposed. Theoretical conclusions and numerical evaluations show that the proposed estimator has higher efficiency than previous estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang X, Li S, and Denœux T, Interval-valued linear model, International Journal of Computational Intelligence Systems, 2015, 8(1): 114–127.

    Article  Google Scholar 

  2. Gil M A, Lubiano M A, Montenegro M, et al., Least squares fitting of an affine function and strength of association for interval-valued data, Metrika, 2002, 56(2): 97–111.

    Article  MathSciNet  MATH  Google Scholar 

  3. Gil M A, Colubi A, and Montenegro M, Testing linear independence in linear models with interval-valued data, Computational Statistics and Data Analysis, 2007, 51(6): 3002–3015.

    Article  MathSciNet  MATH  Google Scholar 

  4. Fagundes R, Souza R, and Cysneiros F, Interval kernel regression, Neurocomputing, 2014, 128(5): 371–388.

    Article  Google Scholar 

  5. Engle R F and Gallo G M, A multiple indicators model for volatility using intra-daily data, Journal of Econometrics, 2006, 131(1): 3–27.

    Article  MathSciNet  MATH  Google Scholar 

  6. González-Rivera G and Lin W, Constrained regression for interval-valued data, Journal of Business and Economic Statistics, 2013, 31(4): 473–490.

    Article  MathSciNet  Google Scholar 

  7. Wang X, Zhang Z, and Li S, Set-valued and interval-valued stationary time series, Journal of Multivariate Analysis, 2016, 145: 208–223.

    Article  MathSciNet  MATH  Google Scholar 

  8. Aumann R J, Integrals of set-valued functions, Journal of Mathematical Analysis and Applications, 1965, 12(1): 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  9. Puri M L and Ralescu D A, A strong law of large numbers for Banach space valued random sets, The Annals of Probability, 1983, 11: 222–224.

    Article  MathSciNet  MATH  Google Scholar 

  10. Vitale R A, Lp metrics for compact, convex sets, Journal of Approximation Theory, 1985, 45: 280–287.

    Article  MathSciNet  MATH  Google Scholar 

  11. Aubin J P and Frankowska H, Set-Valued Analysis, Birkhauser, Basle, Switzerland, 1990.

    MATH  Google Scholar 

  12. Hu S and Papageorgiou N S, Handbook of Multivalued Analysis, Kluwer Academic Publishers, Boston, MA, 1997.

    Book  MATH  Google Scholar 

  13. Li S and Ogura Y, Convergence of set valued sub- and super-martingales in the Kuratowski-Mosco sense, The Annals of Probability, 1998, 26(3): 1384–1402.

    Article  MathSciNet  MATH  Google Scholar 

  14. Li S and Ogura Y, Convergence of set valued and fuzzy valued martingales, Fuzzy Sets and Systems, 1999, 101: 453–461.

    Article  MathSciNet  MATH  Google Scholar 

  15. Li S, Ogura Y, and Kreinovich V, Limit Theorems and Applications of Set-Valued and Fuzzy Set-Valued Random Variables, Kluwer Academic Publishers (Now Springer), Dordrecht, 2002.

    Book  MATH  Google Scholar 

  16. Yang X and Li S, The Dp-metric space of set-valued random variables and its application to covariances, International Journal of Innovative Computing, Information and Control, 2005, 1: 73–82.

    Google Scholar 

  17. Billard L and Diday E, Symbolic regression analysis, Classification Data Analysis and Knowledge Organization, Proceedings of the Eighteenth Conference of the International Federation of Classification Societies (IFCS’02), Springer, 2002, 281–288.

  18. Billard L and Diday E, Regression analysis for interval-valued data, Data Analysis, Classification and Related Methods, Proceedings of the Seventh Conference of the International Federation of Classification Societies (IFCS’00), Springer, 2000, 369–374.

  19. Lima N E and Carvalho F, Centre and range method for fitting a linear regression model to symbolic interval data, Computational Statistics and Data Analysis, 2008, 52(3): 1500–1515.

    Article  MathSciNet  MATH  Google Scholar 

  20. Lima N E and Carvalho F, Constrained linear regression models for symbolic interval-valued variables, Computational Statistics and Data Analysis, 2010, 54(2): 333–347.

    Article  MathSciNet  MATH  Google Scholar 

  21. Blanco-Fernández A, Corral N, and GonzMorález-RodrMoríguez G, Estimation of a flexible simple linear model for interval data based on set arithmetic, Computational Statistics and Data Analysis, 2011, 55(9): 2568–2578.

    Article  MathSciNet  MATH  Google Scholar 

  22. Sun Y, Linear regression with interval-valued data, Wiley Interdisciplinary Reviews: Computational Statistics, 2016, 8(1): 54–60.

    Article  MathSciNet  Google Scholar 

  23. Guo J and Hao P, Constrained center and range joint model for interval-valued symbolic data regression, Computational Statistics and Data Analysis, 2017, 116: 106–138.

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang H, Guan R, and Wu J, CIPCA: Complete-information-based principal component analysis for interval-valued data, Neurocomputing, 2012, 86: 158–169.

    Article  Google Scholar 

  25. Wang H, Guan R, and Wu J, Linear regression of interval-valued data based on complete information in hypercubes, Journal of Systems Science and Systems Engineering, 2012, 21(4): 422–442.

    Article  Google Scholar 

  26. Souza L, Souza R, Amaral G, et al., A parametrized approach for linear regression of interval data, Knowledge-Based Systems, 2017, 131: 149–159.

    Article  Google Scholar 

  27. Hsu H and Wu B, Evaluating forecasting performance for interval data, Computers and Mathematics with Applications, 2008, 56(9): 2155–2163.

    Article  MathSciNet  MATH  Google Scholar 

  28. Amemiya T, Regression analysis when the dependent variable is truncated normal, Econometrica, 1973, 41(6): 997–1016.

    Article  MathSciNet  MATH  Google Scholar 

  29. Amemiya T, Advanced Econometrics, Harvard University Press, Cambridge, 1985.

    Google Scholar 

  30. Heckman J, The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models, Annals of Economic and Social Measurement, 1976, 5(4): 475–492.

    MathSciNet  Google Scholar 

  31. Heckman J, Dummy endogenous variables in a simultaneous equation system, Econometrica, 1978, 46(4): 931–959.

    Article  MathSciNet  MATH  Google Scholar 

  32. Heckman J, Sample selection bias as a specification error, Econometrica, 1979, 47(1): 153–161.

    Article  MathSciNet  MATH  Google Scholar 

  33. Li F, Li S, Tang N, et al., Constrained interval-valued linear regression model, Proceedings of the 20th International Conference on Information Fusion, 2017, No. 8009676, DOI: https://doi.org/10.23919/ICIF.2017.8009676.

  34. Lawson C and Hanson R, Solving Least Squares Problems, Prentice-Hall, Upper Saddle River, 1974.

    MATH  Google Scholar 

  35. Nath G, Moments of a linearly truncated bivariate normal distribution, Australian Journal of Statistics, 1972, 14: 97–102.

    Article  MATH  Google Scholar 

  36. Orme C, On the uniqueness of the maximum likelihood estimator in truncated regression models, Econometric Reviews, 1989, 8(2): 217–222.

    Article  MathSciNet  MATH  Google Scholar 

  37. van der Vaart A, Asymptotic Statistics, Cambridge University Press, Cambridge, 1998.

    Book  MATH  Google Scholar 

  38. Cribari-Neto F and Lima M, Sequence of improved standard errors under heteroskedasticity of unknown form, Journal of Statistical Planning and Inference, 2011, 141(11): 3617–3627.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoumei Li.

Additional information

This research was supported by the National Nature Science Foundation of China under Grant Nos. 11571024 and 11771032, and the Humanities and Social Science Foundation of Ministry of Education of China under Grant No. 20YJCZH245.

This paper was recommended for publication by Editor XU Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Y., Zhang, Z. & Li, S. A Constrained Interval-Valued Linear Regression Model: A New Heteroscedasticity Estimation Method. J Syst Sci Complex 33, 2048–2066 (2020). https://doi.org/10.1007/s11424-020-9075-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-020-9075-2

Keywords

Navigation