Skip to main content
Log in

Carbon-backed thin tin (116Sn) isotope target fabrication by physical vapor deposition technique

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In nuclear reaction experiments, the thin targets are required. In the present work, 30 thin 116Sn targets were prepared using physical vapor deposition technique (preferable for thin film fabrication) on carbon backing with usage efficiency of 98%. The carbon-backed thin target films along with the parting agents are deposited on the particular substrates using a diffusion pump based coating unit. The thicknesses of the targets were verified using α-energy loss and RBS technique and they were in good agreement with each other. The purity of the target, verified using RBS, EDS and XRD techniques, were also tested with confirmation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Banerjee T, Abhilash SR, Kabiraj D, Ojha S, Umapathy GR, Shareef M, Laveen PV, Duggal H, Amarnadh RU, Gehlot J, Nath S, Mehta D (2017) Fabrication of thin targets for nuclear reaction studies at IUAC. Vacuum 144:190–198

    Article  CAS  Google Scholar 

  2. Mahajan R, Abhilash S, Sharma P, Kaur G, Kabiraj D, Duggal H, Mehta D, Behera B (2018) Thin targets for nuclear reaction studies using NAND facility. Vacuum 150:203–206

    Article  CAS  Google Scholar 

  3. Singh V, Abhilash S, Behera B, Kabiraj D (2011) Fabrication of thin self-supporting platinum targets using evaporation techniques. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 635(1):20–23

    Article  CAS  Google Scholar 

  4. Kalkal S, Abhilash S, Kabiraj D, Mandal S, Madhavan N, Singh R (2010) Fabrication of 90,94Zr targets on carbon backing. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 613(2):190–194

    Article  CAS  Google Scholar 

  5. Zell KO (1982) Newsletter, vol. 9, no. 1 International Nuclear Target Development Society, p 6

  6. Manente G, Pengo R (1989) Preparation by rolling of thin cadmium and tin foils and cadmium/lead and tin/lead bonded targets. Nucl Inst Methods Phys Res A 282:140–141

    Article  Google Scholar 

  7. Abhilash S, Gehlot J, Banerjee T, Selvakumar K, Kaur J, Kabiraj D (2015) Recent target development activities at inter-university accelerator centre. J Radioanal Nucl Chem 305(3):749–753

    Article  CAS  Google Scholar 

  8. Sood A, Umapathy GR, Sharma A, Abhilash SR, Ojha S, Kabiraj D, Banerjee A, Singh PP (2020) Self-supporting thin tin targets fabricated by ultra-high vacuum evaporation for heavy-ion induced reactions. Vacuum 172:109107

    Article  CAS  Google Scholar 

  9. Singh A, Shukla A, Singh D, Abhilash SR, Kabiraj D, Avasthi DK (2009) Isotopic Sn target fabrication at IUAC. Proc Int Symp Nucl Phys 54:706–707

    Google Scholar 

  10. Sharma P, Abhilash S, Behera BR, Kabiraj D (2014) Preparation of thin 122Sn targets at IUAC. Proc DAE Symp Nucl Phys 59:912–913

    Google Scholar 

  11. Giri PK, Linda SB, Singh D, Abhilash SR, Kumar H, Kumar R, Muralithar S, Singh RP, Kabiraj D (2015) Fabrication of thin 124Sn target on Al-backing using vacuum evaporation technique at IUAC, New Delhi. Proc DAE Symp Nucl Phys 60:984–985

    Google Scholar 

  12. Ali S, Pai H, Rajbanshi S, Ray P, Roy S, Goswami A (2017) Fabrication of 112Sn target on 208Pb-backing. Proc DAE Symp Nucl Phys 62:1132–1133

    Google Scholar 

  13. Pai H, Ali S, Rajbanshi S, Ray P, Roy S, Goswami A (2019) 112Sn target: fabrication, characterization and application. Vacuum 167:393–396

    Article  CAS  Google Scholar 

  14. Sinha AK, Madhavan N, Das JJ, Sugathan P, Kataria DO, Patro AP, Mehta GK (1994) Heavy ion reaction analyzer (HIRA): a recoil mass separator facility at NSC. Nucl Instrum Methods A 339:543–549

    Article  CAS  Google Scholar 

  15. Deb NK, Kalita K, Abhilash SR, Giri PK, Biswas R, Umapathy GR, Kabiraj D, Chopra S (2019) Fabrication and characterization of thin targets of nickel (61,62Ni) isotopes by physical vapour deposition technique for nuclear reaction studies. Vacuum 163:148–157

    Article  CAS  Google Scholar 

  16. Rohilla A, Gupta CK, Rajbongshi T, Singh RP, Ojha S, Duggal H, Mehta D, Chamoli SK (2015) Fabrication of enriched 174Yb2O3 thin targets on carbon and tantalum backings. Nucl Inst Methods Phys Res A 797:230–233

    Article  CAS  Google Scholar 

  17. Behrndt K, Love R (1962) Automatic control of film-deposition rate with the crystal oscillator for preparation of alloy films. Vacuum 12(1):1–9

    Article  CAS  Google Scholar 

  18. Braski DN (1972) A study of various parting agents for producing self-supporting thin films. Nucl Instrum Methods 102(3):553–566

    Article  CAS  Google Scholar 

  19. Hosamani MM, Abhilash SR, Ojha S, Umapathy GR, Badiger NM, Kabiraj D (2019) Fabrication and characterization of targets of oxidizing materials for heavy ion nuclear reaction experiments. J Instrum 14:P01007

    Article  CAS  Google Scholar 

  20. Freund LB, Suresh S (2004) Thin film materials: stress, defect formation and surface evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  21. Rajesh KK, Musthafa MM, Hosamani MM, Shamlath A, Abhilash SR, Kabiraj D (2017) Fabrication of carbon sandwiched thin targets of 138Ba by evaporation technique. Vacuum 141:230–234

    Article  CAS  Google Scholar 

  22. Yaffe L (1962) Preparation of thin films, sources, and targets. Annu Rev Nucl Sci 12(1):153–188

    Article  CAS  Google Scholar 

  23. Sahoo RN, Jyothi GN, Sood A, Abhilash SR, Umapathy GR, Kabiraj D, Ojha S, Rao PVM, Singh PP (2019) Fabrication of thin 130Te target foils for sub-barrier fusion studies. Nucl Inst Methods Phys Res A 935:103–109

    Article  CAS  Google Scholar 

  24. Ziegler JF, Biersack JP, Ziegler MD (2008) SRIM: a the stopping and range of ions in matter. SRIM Co, Chester. ISBN 0-9654207-1-X. http://www.SRIM.org

  25. Sharma R, Umapathy GR, Kumar P, Ojha S, Gargari S, Joshi R, Chopra S, Kanjilal D (2019) Ams and upcoming geochronology facility at inter university accelerator centre (IUAC), New Delhi, India. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 438:124–130

    Article  CAS  Google Scholar 

  26. Chu W-K, Mayer JW, Nicolet MA (1978) Backscattering spectroscopy

  27. Doolittle L (1985) Rump: rutherford backscattering spectroscopy analysis package. Nucl Instrum Methods Phys Res Sect B 9:344

    Article  Google Scholar 

  28. Salamat A, Briggs R, Bouvier P, Petitgirard S, Dewaele A, Cutler ME, Corà F, Daisenberger D, Garbarino G, McMillan PF (2013) High-pressure structural transformations of Sn up to 138 gPa: angle-dispersive synchrotron X-ray diffraction study. Phys Rev B 88(10):104104–1

    Article  Google Scholar 

  29. Wolcyrz M, Kubiak R, Maciejewski S (1981) X-ray investigation of thermal expansion and atomic thermal vibrations of tin, indium, and their alloys. Phys Status Solidi (b) 107(1):245–253

    Article  CAS  Google Scholar 

  30. Neykov N, Peneva S, Djuneva K (1992) Electrochemically obtained tin—Part II. Zeitschrift für Kristallographie Cryst Mater 202(1–4):215–226

    CAS  Google Scholar 

  31. Hassel O, Mark H (1924) Über die kristallstruktur des graphits. Zeitschrift für Physik 25(1):317–337

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Dr. D. Kanjilal, IUAC for extending FESEM facility, procured under Geochronology Project [MoES/P.O.(Seismic)8(09) Geochron/2012]. Authors are also thankful to Dr. Sunil Ojha, IUAC, for the help and support extended towards RBS and EDS characterizations; Health Physics Department, IUAC for providing the strong radioactive source and Mr. Dipak Das on behalf of the Sophisticated Analytical Instrument Facility (SAIF)—XRD, Department of Intrumentation and USIC, Gauhati University, Guwahati—14, Assam. Authors also thank Mr. M. M. Hosamani, Karnatak University, and Dr. Mausumi Das, Gauhati University, for fruitful suggestions regarding this work. One of the authors (N. K. Deb) gratefully acknowledges the Council of Scientific and Industrial Research (CSIR) (Grant No. 09/059(0056)/2014-EMR-I), New Delhi for the award of junior research fellowship in order to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kushal Kalita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deb, N.K., Kalita, K., Giri, P.K. et al. Carbon-backed thin tin (116Sn) isotope target fabrication by physical vapor deposition technique. J Radioanal Nucl Chem 326, 97–104 (2020). https://doi.org/10.1007/s10967-020-07316-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07316-0

Keywords

Navigation