Skip to main content
Log in

Study of the ability of 2-AMPR resin to separate Re(VII) from U(VI) in acidic aqueous solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this work, the 2-AMPR resin was used to separate rhenium from uranium in acidic aqueous solution. The morphology and structure of 2-AMPR before and after adsorption were characterized using SEM, FT-IR, and XPS. In both the static and dynamic adsorption–desorption experiments, the 2-AMPR resin showed excellent enrichment capacity for rhenium, which means that the 2-AMPR anion exchange resin has good industrial application prospects in terms of recovery of rhenium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Magyar MJ (2006) Mineral yearbook: rhenium. US Geological Survey

  2. Shu ZN, Yang MH (2010) Adsorption of rhenium(VII) with anion exchange resin D318. Chin J Chem Eng 18(3):372–376

    Article  CAS  Google Scholar 

  3. Sutulov A (1970) Molybdenum and rhenium recovery from porphyry coppers, 1st edn. University of Concepción, Chile

    Google Scholar 

  4. Lou ZN, Wan L, Guo CF et al (2015) Separation Re(VII) from Mo(VI) onto magnetic modified cross-linked chitosan crab shells gel by using kinetics. Ind Eng Chem Res 54:1333–1341

    Article  CAS  Google Scholar 

  5. Xiong Y, Xu J, Shan WJ et al (2013) A new approach for rhenium(VII) recovery by using modified brown algae Laminaria japonica adsorbent. Bioresour Technol 127:464–472

    Article  CAS  Google Scholar 

  6. Varro R, Saucedo I, Gonzalez C et al (2012) Amberlite XAD-7 impregnated with Cyphos IL-101 (tetraalkylphosphonium ionic liquid) for Pd(II) recovery from HCl solutions. Chem Eng J 185:226–235

    Google Scholar 

  7. Mao J, Lee SY, Won SW et al (2010) Surface modified bacterial biosorbent with poly(allylamine hydrochloride): development using response surface methodology and use for recovery of hexachloroplatinate(IV) from aqueous solution. Water Res 44:5919–5928

    Article  CAS  Google Scholar 

  8. Soylak M, Saracoglu S, Divrikli U et al (2005) Coprecipitation of heavy metals with erbium hydroxide for their flame atomic absorption spectrometric determinations in environmental samples. Talanta 66:1098–1102

    Article  CAS  Google Scholar 

  9. Els ER, Lorenzen L, Aldrich C (2000) The adsorption of precious metals and base metals on a quaternary ammonium group ion exchange resin. Miner Eng 13:401–414

    Article  CAS  Google Scholar 

  10. Weerawat P, Nattaphol V, Ura P (2003) Selective recovery of palladium from used aqua regia by hollow fiber supported with liquid membrane. Korean J Chem Eng 20:1092–1096

    Article  CAS  Google Scholar 

  11. Pang SK, Yung KC (2014) Prerequisites for achieving gold adsorption by multiwalled carbon nanotubes in gold recovery. Chem Eng Sci 107:58–65

    Article  CAS  Google Scholar 

  12. Fan RY, Xie F, Guan XL et al (2014) Selective adsorption and recovery of Au(III) from three kinds of acidic systems by persimmon residual based bio-sorbent: a method for gold recycling from e-wastes. Bioresour Technol 163:167–171

    Article  CAS  Google Scholar 

  13. Sun CM, Zhang GH, Wang CH et al (2011) A resin with high adsorption selectivity for Au(III): preparation, characterization and adsorption properties. Chem Eng J 172:713–720

    Article  CAS  Google Scholar 

  14. Virolainen S, Laatikainen M, Sainio T (2015) Ion exchange recovery of rhenium from industrially relevant sulfate solutions: single column separations and modeling. Hydrometallurgy 158:74–82

    Article  CAS  Google Scholar 

  15. Xiong CH, Yao CP, Wu XM (2008) Adsorption of rhenium(VII) on 4-amino-1,2,4-triazole resin. Hydrometallurgy 90:221–226

    Article  CAS  Google Scholar 

  16. Nebeker N, Hiskey JB (2012) Recovery of rhenium from copper leach solution by ion exchange. Hydrometallurgy 125:64–68

    Article  Google Scholar 

  17. Cheema HA, Ilyas S, Masud S et al (2018) Selective recovery of rhenium from molybdenite flue-dust leach liquor using solvent extraction with TBP. Sep Purif Technol 191:116–121

    Article  CAS  Google Scholar 

  18. Zhang ZB, Dong ZM, Wang XX et al (2019) Synthesis of ultralight phosphorylated carbon aerogel for efficient removal of U(VI): batch and fixed-bed column studies. Chem Eng J 370:1376–1387

    Article  CAS  Google Scholar 

  19. Zhang ZB, Dong ZM, Wang XX et al (2018) Ordered mesoporous polymer-carbon composites containing amidoxime groups for uranium removal from aqueous solutions. Chem Eng J 341:208–217

    Article  CAS  Google Scholar 

  20. Li YH, Wang Q, Li Q et al (2015) Simultaneous speciation of inorganic rhenium and molybdenum in the industrial wastewater by amino-functionalized nano-SiO2. J Taiwan Inst Chem Eng 000:1–7

    Article  Google Scholar 

  21. Liu HZ, Zhang B, Jing XJ et al (2018) Adsorption and desorption for rhenium using a kind of weak-base anion resin. Rare Met 37(8):707–715

    Article  Google Scholar 

  22. Jiang YH, Li F, Ding GB et al (2015) Synthesis of a novel ionic liquid modified copolymer hydrogel and its rapid removal of Cr(VI) from aqueous solution. J Colloid Interface Sci 455:125–133

    Article  CAS  Google Scholar 

  23. Yang LJ, Chu XJ, Wang F, Li YH (2014) Investigation of selective and effective recovery of noble metal osmium by adsorption onto nano-Al2O3 particles. New J Chem 38:3250–3257

    Article  CAS  Google Scholar 

  24. Dong ZM, Zhang ZB, Zhou RZ et al (2020) Construction of oxidized millimeter-sized hierarchically porous carbon spheres for U(VI) adsorption. Chem Eng J 386:1–9

    Article  Google Scholar 

  25. Xiong Y, Wang HT, Lou ZN et al (2011) Selective adsorption of molybdenum(VI) from Mo–Re bearing effluent by chemically modified astringent persimmon. J Hazard Mater 186:1855–1861

    Article  CAS  Google Scholar 

  26. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 38:2221–2295

    Article  CAS  Google Scholar 

  27. Xiong Y, Song Y, Tong Q et al (2017) Adsorption-controlled preparation of anionic imprinted amino-functionalization chitosan for recognizing rhenium(VII). Sep Purif Technol 177:142–151

    Article  CAS  Google Scholar 

  28. Wang XL, Li Y, Huang J et al (2019) Efficiency and mechanism of adsorption of low concentration uranium in water by extracellular polymeric substances. J Environ Radioact 197:81–89

    Article  CAS  Google Scholar 

  29. Dong Z, Zhao L (2018) Covalently bonded ionic liquid onto cellulose for fast adsorption and efficient separation of Cr(VI): batch, column and mechanism investigation. Carbohydr Polym 189:190–197

    Article  CAS  Google Scholar 

  30. Jia M, Cui HM, Jin WQ et al (2012) Adsorption and separation of rhenium(VII) using N-methylimidazolium functionalized strong basic anion exchange resin. Chem Technol Biotechnol 88(3):437–443

    Article  Google Scholar 

  31. Miniakhmetov IA, Semenov SA, Musatova VY et al (2013) Solvent extraction of rhenium with N-(2-hydroxy-5-nonylbenzyl)-β-hydroxyethylmethylamine. Inorg Chem 58:1380–1382

    CAS  Google Scholar 

  32. Freundlich H (1906) Uber die adsorption in losungen. Z Phys Chem 57:385–470

    CAS  Google Scholar 

  33. Song Q, Ma LJ, Liu J (2012) Preparation and adsorption performance of 5-azacytosine-functionalized hydrothermal carbon for selective solid-phase extraction of uranium. J Colloid Interface Sci 386:291–299

    Article  CAS  Google Scholar 

  34. Dong Z, Liu JZ, Yuan WJ et al (2016) Recovery of Au(III) by radiation synthesized aminomethyl pyridine functionalized adsorbents based on cellulose. Chem Eng J 283:504–513

    Article  CAS  Google Scholar 

  35. Mikhaylenko MA, Blokhin AA (2012) Ion exchange resins tailored for effective recovery and separation of rhenium, molybdenum and tungsten. Presented at the SME Annual Meeting, Seattle

    Google Scholar 

  36. Zhang LF, Xia W, Liu X et al (2015) Synthesis of titanium cross-linked chitosan composite for efficient adsorption and detoxification of hexavalent chromium from water. J Mater Chem A 3(1):331–340

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from National Natural Science Foundation of China (21761002, 21501025), Science and Technology Research Project of Jiangxi Provincial Education Development, China (GJJ170430), Doctoral Research Startup Fund Project of East China University of Technology (DHBK2017133), Jiangxi Provincal Key Laboratory of Mass Spectrometry Science and Instrument Development Fund (JSMS2017013), Defense Foundation Project, China (JCKY2017401C005), Nuclear energy development project (technology for the mining and metallurgy of associated uranium resources—on the demonstration of uranium co-mining in Bayan Ura, Inner Mongolia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Hua.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, R., Zhang, Y., Liu, F. et al. Study of the ability of 2-AMPR resin to separate Re(VII) from U(VI) in acidic aqueous solutions. J Radioanal Nucl Chem 326, 261–271 (2020). https://doi.org/10.1007/s10967-020-07300-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07300-8

Keywords

Navigation