Skip to main content
Log in

Tissue-Specific CRISPR/Cas9 System of Cotton Pollen with GhPLIMP2b and GhMYB24 Promoters

  • Research Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

CRISPR/Cas9 technology is a powerful tool for improving crop genetic traits. However, CRISPR/Cas9 system for efficient expression of cotton germ cells has still not been established. In this study, we developed a tissue-specific vectors to drive Cas9 expression with GhPLIMP2b and GhMYB24 promoters and established the effective method to transform cotton pollen by Agrobacterium vacuum infiltration. GhPLIMP2b and GhMYB24 promoters of cotton pollen were cloned into Cas9 expression vectors. The sgRNAs targetting to CLA1, ERA1 and GGB (drought-resistant negative regulation genes) were designed and constructed into GhPLIMP2b and GhMYB24 promoter vectors. Cotton pollens were tranformed by Agrobacterium vacuum infiltration with GhPLIMP2b and GhMYB24 promoter vectors. The results of clone sequencing shown that mutation types of the sequence were mainly base substitutions wth the frequency from 3.29 to 6.45%. Eleven potential off-target sites were chosen and two sites were observed. Our results indicated that GhPLIM2bP::Cas9 and GhMYB24P::Cas9 editing vectors achieved targeted edition of endogenous genes in cotton pollen, but there were a few off-target effects. This study provides an effective gene-editing system for the rapid acquisition of cotton mutants using pollen as a transgenic receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amin NA, Ahmad N, Wu N, Pu X, Ma T, Du Y, Bo X, Wang N, Sharif R, Wang P (2019) CRISPR-Cas9 mediated targeted disruption of FAD2-2 microsomal omega-6 desaturase in soybean (Glycine maxL.). BMC Biotechnol 19:1–10

    Google Scholar 

  • Anzu O, Taj A, Nikolai B, Niharika S, Nathan SW, Elise JT, Ute B, Peter L, Ryan W (2019) CRISPR/Cas9-mediated knockout of Ms1 enables the rapid generation of male-sterile hexaploid wheat lines for use in hybrid seed production. Plant Biotechnol J 17:1905–1913

    Article  Google Scholar 

  • Arnaud D, Déjardin A, Leplé JC, Lesage-Descauses MC, Pilate G (2007) Genome-wide analysis of LIM gene family in Populus trichocarpa, Arabidopsis thaliana, and Oryza sativa. DNA Res 14:103–116

    Article  CAS  Google Scholar 

  • Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9:10

    Article  Google Scholar 

  • Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52

    Article  CAS  Google Scholar 

  • Chen XG, Lu XK, Shu N, Wang S, Wang JJ, Wang DL, Guo LX, Ye WW (2017) Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system. Sci Rep. https://doi.org/10.1038/srep44304

    Article  PubMed  PubMed Central  Google Scholar 

  • Eliasson Å, Gass N, Mundel C, Baltz R, Kräuter R, Evrard JL, Steinmetz A (2000) Molecular and expression analysis of a LIM protein gene family from flowering plants. Mol Gen Genet 264:257–267

    Article  CAS  Google Scholar 

  • Gao W, Long L, Tian XQ, Xu FC, Liu J, Singh PK, Botella JR, Song CP (2017) genome editing in cotton with the CRISPR/Cas9 system. Front Plant Sci. https://doi.org/10.3389/fpls.2017.0136

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang HH, Yu M, Lai EM (2017) Agrobacterium-mediated plant transformation: biology and applications. Arabidopsis Book. https://doi.org/10.1199/tab.0186

    Article  PubMed  PubMed Central  Google Scholar 

  • Janga MR, Campbell LM, Rathore KS (2017) CRISPR/Cas9-mediated targeted mutagenesis in upland cotton (Gossypiumhirsutum L.). Plant Mol Biol 94:349–360

    Article  CAS  Google Scholar 

  • Jiang WZ, Zhou HB, Bi HH, Fromm ME, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. https://doi.org/10.1093/nar/gkt780

    Article  PubMed  PubMed Central  Google Scholar 

  • Lei JF, Wu J, Chen XJ, Yu TP, Ni ZY, Li Y, Zhang JS, Liu XD (2015) Cloning and functional analysis of cotton U6 promoter with high transcription activity in cotton pollen. Sci Agric Sin 48:3794–3802

    CAS  Google Scholar 

  • Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013a) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotianabenthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691

    Article  CAS  Google Scholar 

  • Li Y, Jiang J, Du ML, Li L, Wang XL, Li XB (2013b) A cotton gene encoding MYB-Like transcription factor is specifically expressed in pollen and is involved in regulation of late anther/pollen development. Plant Cell Physiol 54:893–906

    Article  CAS  Google Scholar 

  • Li C, Unver T, Zhang BH (2017) A high-efficiency CRISPR/Cas9 system for targeted mutagenesis in cotton (Gossypium hirsutumL.). Sci Rep 7:43902

    Article  Google Scholar 

  • Li JY, Lei JF, Dai PH, Yao R, Qu YY, Chen QJ, Li Y, Liu XD (2018a) Establishment of CRISPR/Cas9 genome editing system based on GbU6 promoters in cotton (Gossypium barbadense L.). J Crop Sci 44:227–235

    Google Scholar 

  • Li C, Hao MY, Wang WX, Wang H, Chen F, Chu W, Zhang BH, Mei DS, Cheng HT, Hu Q (2018b) An efficient CRISPR/Cas9 platform for rapidly generating simultaneous mutagenesis of multiple gene homoeologs in allotetraploid oilseed rape. Int J Mol Sci. https://doi.org/10.3389/fpls.2018.00442

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang Z, Zhang K, Chen KL, Gao CX (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genom 41:63–68

    Article  CAS  Google Scholar 

  • Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu YG (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8:1274–1284

    Article  CAS  Google Scholar 

  • Mao YF, Zhang ZJ, Feng ZY, Wei PL, Zhang H, Botella JR, Zhu JK (2016) Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in Arabidopsis. Plant Biotechnol J 14:519–532

    Article  CAS  Google Scholar 

  • Osakabe Y, Liang ZC, Ren C, Nishitani C, Osakabe K, Wada M, Komori S, Malnoy M, Velasco R, Poli M (2018) CRISPR-Cas9-mediated genome editing in apple and grapevine. Nat Protoc 13:2844–2863

    Article  CAS  Google Scholar 

  • Schreiber DN, Dresselhaus T (2003) In vitro pollen germination and transient transformation of Zea mays and other plant species. Plant Mol Biol Rep 21:31–41

    Article  Google Scholar 

  • Wang YP, Cheng X, Shan QW, Zhang Y, Liu JX, Gao CX, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powderymildew. Nat Biotechnol 32:947–951

    Article  CAS  Google Scholar 

  • Wang ZP, Xing HL, Dong L, Zhang HY, Han CY, Wang XC, Chen QJ (2015) Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol. https://doi.org/10.1186/s13059-015-0715-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Akhunova A, Chao S, Akhunov E (2016) Optimizing multiplex CRISPR/Cas9-based genome editing for wheat. Bio Rxiv. https://doi.org/10.1101/051342

    Article  Google Scholar 

  • Wang DD, Samsulrizal N, Yan C, Allcock NS, Craigon J, Blanco-Ulate B, Ortega-Salazar I, Marcus SE, Bagheri HM, Perez-Fons L, Fraser PD, Foster T, Fray RG, Knox JP, Seymour GB (2018) Characterisation of CRISPR mutants targeting genes modulating pectin degradation in ripening tomato. Plant Physiol. https://doi.org/10.1104/pp.18.01187

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang C, Liu Q, Shen Y, Hua YF, Wang JJ, Lin JR, Wu MG, Sun TT, Cheng ZK, Mercier R, Wang KJ (2019) Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nat Biotechnol 37:283–286

    Article  CAS  Google Scholar 

  • Xie KB, Yang YN (2013) RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant 6:1975–1983

    Article  CAS  Google Scholar 

  • Xie SS, Shen B, Zhang CB, Huang XX, Zhang YL (2014) sgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS ONE 9:1–9

    CAS  Google Scholar 

  • Xie XR, Ma XL, Zhu QL, Zeng DC, Li GS, Liu YG (2017) CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing. Mol Plant 10:1246–1249

    Article  CAS  Google Scholar 

  • Yan LH, Wu YR, Li HJ, Yang WC, Wei SW, Hu RL, Xie Q (2015) High efficiency genome editing in Arabidopsis using Yao promoter-driven CRISPR/Cas9 system. Mol Plant 8:1820–1823

    Article  CAS  Google Scholar 

  • Ye JR, Xu ML (2012) Actin bundler PLIM2s are involved in the regulation of pollen development and tube growth in Arabidopsis. J Plant Physiol 169:516–522

    Article  CAS  Google Scholar 

  • Zhang SJ, Zhang RZ, Song GQ, Gao J, Li W, Han XD, Chen ML, Li YL, Li GY (2018) Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in common wheat. BMC Plant Biol 18:1–12

    Article  Google Scholar 

  • Zhao X, Meng ZG, Wang Y, Chen WJ, Sun CJ, Cui B, Cui JH, Yu ML, Zeng ZH, Guo SD, Luo D, Cheng Jeery Q, Zhang R, Cui HX (2017) Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nat Plant 3:956–964

    Article  CAS  Google Scholar 

  • Zhu SH, Yu XL, Li YJ, Sun YQ, Zhu QH, Sun J (2018) Highly efficient targeted gene editing in upland cotton using the CRISPR/Cas9 system. Int J Mol Sci 19:3000

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (316604330); the Fundamental Research Funds for the Central Universities (KYYJ201701); Xinjiang Uygur Autonomous Region postgraduate research and innovation project (XJ2019G131); Xinjiang Agricultural University cotton team development fund (XNMH2019003)

Author information

Authors and Affiliations

Authors

Contributions

XDL and JFL designed the experiment; JFL, PHD, JYL, MY, XQL, WQZ, GTZ and WZG performed the experiments and analyzed the data; JFL and XDL wrote the manuscript. All the authors agreed on the contents of the paper and post no conflicting interest.

Corresponding author

Correspondence to Xiaodong Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, J., Dai, P., Li, J. et al. Tissue-Specific CRISPR/Cas9 System of Cotton Pollen with GhPLIMP2b and GhMYB24 Promoters. J. Plant Biol. 64, 13–21 (2021). https://doi.org/10.1007/s12374-020-09272-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-020-09272-4

Keywords

Navigation