Skip to main content
Log in

Thermodynamic Modeling of the Al-Li-Zr Ternary System

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Using CALPHAD method, the Al-Zr, Al-Li and Al-Li-Zr systems have been reassessed based on the latest experimental phase relations from literatures and the first-principle calculation of the formation enthalpy for ternary compound T1(AlLi2Zr) in this work. The excess Gibbs energies of solution phases, including liquid, bcc, fcc and hcp, were expressed by the Redlich–Kister polynomial. The stoichiometric compounds, i.e. Al4Zr5, Al3Zr5, AlZr2, AlZr3, Al2Li3, Al4Li9 and T1(AlLi2Zr), were modeled as stoichiometric model and the non-stoichiometric compounds, i.e. Al3Zr, Al2Zr, Al3Zr2, AlZr, Al3Zr4, Al2Zr3, AlLi2 and T2(AlLix+yZr5−x), were described with different sublattice models. Finally, a set of reasonable thermodynamic parameters for Al-Li-Zr ternary system have been obtained, which notes a clear improvement on the self-consistency. The calculated isothermal section at 470 K of Al-Li-Zr system was in reasonable agreement with the experimental one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The raw data and the processed data required to reproduce these findings are available from the corresponding author upon request, but most of them are included within the article.

References

  1. T. Tian, X.F. Wang, and W. Li, Ab Initio Calculations on Elastic Properties in L12 Structure Al3X and X3Al-type (X = Transition or Main Group Metal) Intermetallic Compounds, Solid State Commun., 2013, 156, p 69-75. https://doi.org/10.1016/j.ssc.2012.10.021

    Article  ADS  Google Scholar 

  2. Y. Wang, H.Y. Liu, X.C. Ma, R.Z. Wu, J.F. Sun, L.G. Hou, J.H. Zhang, X.L. Li, and M.L. Zhang, Effects of Sc and Zr on Microstructure and Properties of 1420 Aluminum Alloy, Mater. Charact., 2019, 154, p 241-247. https://doi.org/10.1016/j.matchar.2019.06.001

    Article  Google Scholar 

  3. Y.J. Gao, Q.F. Mo, H.N. Chen, C.G. Huang, and L.N. Zhang, Atomic Bonding and Mechanical Properties of Al-Li-Zr Alloy, Mater. Sci. Eng. A, 2009, 499, p 299-303. https://doi.org/10.1016/j.msea.2007.11.113

    Article  Google Scholar 

  4. M.H. Tosten, J.M. Galbraith, and P.R. Howell, Nucleation of δ′(AI3Li) on/β′(Al3Zr) in Al-Li-Zr and AI-Li-Cu-Zr Alloys, J. Mater. Sci. Lett., 1987, 6, p 51-53. https://doi.org/10.1007/BF01729426

    Article  Google Scholar 

  5. Y. Wang, H.J. Wu, X.T. Liu, Y.L. Jiao, J.F. Sun, R.Z. Wu, L.G. Hou, J.H. Zhang, X.L. Li, and M.L. Zhang, High-Strength and Ductility Bimodal-Grained Al-Li/Al-Li-Zr Composite Produced by Accumulative Roll Bonding, Mater. Sci. Eng. A, 2019, 761, p 138049. https://doi.org/10.1016/j.msea.2019.138049

    Article  Google Scholar 

  6. J.O. Andersson, T. Helander, L. Hoglund, P. Shi, and B. Sundman, Thermo-Calc and DICTRA, Computational Tools for Materials Science, CALPHAD, 2002, 26, p 273-312. https://doi.org/10.1016/S0364-5916(02)00037-8

    Article  Google Scholar 

  7. L. Zhang, M. Stratmann, Y. Du, B. Sundman, and I. Steinbach, Incorporating the CALPHAD Sublattice Approach of Ordering into the Phase-Field Model with Finite Interface Dissipation, Acta Mater., 2015, 88, p 156-169. https://doi.org/10.1016/j.actamat.2014.11.037

    Article  Google Scholar 

  8. B. Samanta, S. Balakrishnan, R. Pagoti, K. Ananthasivan, K. Joseph, and A. Dasgupta, Measurement of Solidus and Liquidus in the System Zr-Al (20–95 at.% Zr) by Using the Spot-Technique, Thermochim. Acta, 2018, 667, p 132-139. https://doi.org/10.1016/j.tca.2018.07.009

    Article  Google Scholar 

  9. K. Puhakainen, M. Boström, T.L. Groy, and U. Häussermann, A New Phase in the System Lithium–Aluminum: Characterization of Orthorhombic Li2Al, J. Solid State Chem., 2010, 183, p 2528-2533. https://doi.org/10.1016/j.jssc.2010.08.029

    Article  ADS  Google Scholar 

  10. G.M. Zatorska, V.V. Pavlyuk, and V.M. Davydov, Phase Equilibria and Crystal Structure of Compounds in the Zr-Li-Al System at 470 K, J. Alloys Compd., 2002, 333, p 138-142. https://doi.org/10.1016/S0925-8388(01)01700-5

    Article  Google Scholar 

  11. N. Saunders and V.G. Rivlin, Thermodynamic Characterization of Al-Cr, AI-Zr and Al-Cr-Zr Alloy Systems, Mater. Sci. Technol., 1986, 2, p 521-527. https://doi.org/10.1179/mst.1986.2.6.520

    Article  Google Scholar 

  12. N. Saunders, Calculated Stable and Metastable Phase Equilibria in Al-Li-Zr Alloys, Z. Metallkd., 1989, 80, p 894-903

    Google Scholar 

  13. J. Murray, A. Peruzzi, and J.P. Abriata, The AI–Zr (Aluminum–Zirconium) System, J. Phase Equilib., 1992, 13, p 277-291. https://doi.org/10.1007/BF02667556

    Article  Google Scholar 

  14. T. Wang, Z.P. Jin, and J.C. Zhao, Thermodynamic Assessment of the Al-Zr Binary System, J. Phase Equilib., 2001, 22, p 544-551. https://doi.org/10.1007/s11669-001-0072-4

    Article  Google Scholar 

  15. E. Fischer and C. Colinet, An Updated Thermodynamic Modeling of the Al-Zr System, J. Phase Equilib., 2015, 36, p 404-413. https://doi.org/10.1007/s11669-015-0398-y

    Article  Google Scholar 

  16. M. Tamim and K. Mahdouk, Thermodynamic Reassessment of the Al-Zr Binary System, J. Therm. Anal. Calorim., 2018, 131, p 1187-1200. https://doi.org/10.1007/s10973-017-6635-3

    Article  Google Scholar 

  17. B. Hallstedt and O. Kim, Thermodynamic Assessment of the Al-Li system, Z. Metall., 2007, 98, p 961-969. https://doi.org/10.3139/146.101553

    Article  Google Scholar 

  18. Z.H. Long, S.Y. Liang, and F.C. Yin, Experimental Study and Thermodynamic Assessment of Li-Si-Zr Ternary System, Chin. J. Nonferrous Met., 2015, 25, p 1227-1235

    Google Scholar 

  19. D.J. McPherson and M. Hansen, The System Zirconium Aluminum, Trans. Am. Soc. Met., 1954, 46, p 354-374

    Google Scholar 

  20. M. Pötzschke and K. Schubert, The Constitution of Some T4–B3 Homologuos and Quasi-Homologuos Systems: II: The Systems Titanium–Aluminium, Zirconium–Aluminium, Hafnium–Aluminium, Molybdenum–Aluminium and Some Ternary Systems, Z. Metallkd., 1962, 53, p 548-561

    Google Scholar 

  21. A. Peruzzi, Reinvestigation of the Zr-Rich End of the Zr-Al Equilibrium Phase Diagram, J. Nucl. Mater., 1992, 186, p 89-99. https://doi.org/10.1016/0022-3115(92)90326-G

    Article  ADS  Google Scholar 

  22. W.L. Fink and L.A. Willey, Equilibrium Relations in Aluminum-Zirconium Alloys of High Purity, Trans. AIME, 1939, 133, p 69-80

  23. A. Janghorban, A. Antoni-Zdziobek, M. Lomello-Tafin, C. Antion, Th. Mazingue, and A. Pisch, Phase Equilibria in the Aluminium-Rich Side of the Al-Zr System, J. Therm. Anal. Calorim., 2013, 114, p 1015-1020. https://doi.org/10.1007/s10973-013-3113-4

    Article  Google Scholar 

  24. F. Wang, D.G. Eskin, and A.V. Khvan, On the Occurrence of a Eutectic-Type Structure in Solidification of Al-Zr Alloys, Scr. Mater., 2017, 133, p 75-78. https://doi.org/10.1016/j.scriptamat.2017.02.027

    Article  Google Scholar 

  25. A.V. Khvan, D.G. Eskinb, and K.F. Starodub, New Insights into Solidification and Phase Equilibria in the Al-Al3Zr System: Theoretical and Experimental Investigations, J. Alloys Compd., 2018, 743, p 626-638. https://doi.org/10.1016/j.jallcom.2018.02.023

    Article  Google Scholar 

  26. P. Chiotti and P.F. Woerner, Metal Hydride Reactions. I. Reaction of Hydrogen With Solutes in Liquid Metal Solvents, J. Less-Common Met., 1964, 7, p 111-119. https://doi.org/10.1016/0022-5088(64)90052-9

    Article  Google Scholar 

  27. O. Dezellus, B. Gardiola, and J. Andrieux, On the Solubility of Group IV Elements (Ti, Zr, Hf) in Liquid Aluminum Below 800°C, J. Phase Equilib. Diff., 2014, 35, p 120-126. https://doi.org/10.1007/s11669-013-0278-2

    Article  Google Scholar 

  28. S.N. Tiwari and K. Tangri, The Solid Solubility of Aluminum in α-Zirconium, J. Nucl. Mater., 1970, 34, p 92-96. https://doi.org/10.1016/0022-3115(70)90011-5

    Article  ADS  Google Scholar 

  29. T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagrams, 2nd ed., ASM International, Materials Park, 1990

    Google Scholar 

  30. C.G. Wilson and E.J. Spooner, The Crystal Structure of ZrAl2, Acta Crystallogr., 1960, 13, p 358-359

    Article  Google Scholar 

  31. C.G. Wilson, D.K. Thomas, and F.J. Spooner, The Crystal Structure of Zr4Al3Acta Crystallogr., 1960, 13, p 56-57

  32. F.J. Spooner and C.G. Wilson, The Crystal Structure of ZrAl, Acta Crystallogr., 1962, 15, p 621-622

    Article  Google Scholar 

  33. G. Brauer, Crystal Structure of Intermetallic Alloys of Aluminium with Titanium, Zirconium, Thorium, Niobium and Tantalum, Naturwissenschaflen, 1938, 26, p 144

    Article  Google Scholar 

  34. R.J. Kematick and H.F. Franzen, Thermodynamic Study of the Zirconium–Aluminum System, J. Solid State Chem., 1984, 54, p 226-234. https://doi.org/10.1016/0022-4596(84)90150-6

    Article  ADS  Google Scholar 

  35. R. Klein, I. Jacob, P.A.G. O’Hare, and R.N. Goldberg, Solution-Calorimetric Determination of the Standard Molar Enthalpies of Formation of the Pseudobinary Compounds Zr(AlxFe1−x)2 at the Temperature 298.15 K, J. Chem. Thermodyn., 1994, 26, p 599-608. https://doi.org/10.1006/jcht.1994.1069

    Article  Google Scholar 

  36. S.V. Meschel and O.J. Kleppa, Standard Enthalpies of Formation of 4d Aluminides by Direct Synthesis Calorimetry, J. Alloys Compd., 1993, 191, p 111-116. https://doi.org/10.1016/0925-8388(93)90280-Z

    Article  Google Scholar 

  37. T. Maciąg, Enthalpy of Formation of Intermetallic Phases from Al–Zr System Determined by Calorimetric Solution Method, J. Therm. Anal., 2018, 134, p 423-431. https://doi.org/10.1007/s10973-017-6917-9

    Article  Google Scholar 

  38. Y.H. Duan, B. Huang, Y. Sun, M.J. Peng, and S.G. Zhou, Stability, Elastic Properties and Electronic Structures of the Stable Zr-Al Intermetallic Compounds: A Frst-Principles Investigation, J. Alloys Compd., 2014, 590, p 50-60. https://doi.org/10.1016/j.jallcom.2013.12.079

    Article  Google Scholar 

  39. J. Wang, S.L. Shang, Y. Wang, Z.G. Mei, Y.E. Liang, Y. Du, and Z.K. Liu, First Principles Calculations of Binary Al Compounds: Enthalpies of Formation and Elastic Properties, J. CALPHAD, 2011, 35, p 562-573. https://doi.org/10.1016/j.calphad.2011.09.009

    Article  Google Scholar 

  40. G. Ghosh and M. Asta, First-Principles Calculation of Structural Energetic of Al-TM (TM = Ti, Zr, Hf) Intermetallics, J. Acta Mater., 2005, 53, p 3225-3252. https://doi.org/10.1016/j.actamat.2005.03.028

    Article  Google Scholar 

  41. H. Zhang and S.Q. Wang, The Structural Stabilities of the Intermetallics and the Solid-State Phase Transformations Induced by Lattice Vibration Effects in the Al-Zr System by First-Principles Calculations, J. Mater. Res., 2010, 25, p 1689-1694. https://doi.org/10.1557/JMR.2010.0227

    Article  ADS  Google Scholar 

  42. Y.O. Esin, N.P. Bobrov, M.S. Petrushevski, and P.V. Gel’d, Enthalpies of Formation of Liquid Aluminium Alloys with Titanium and Zirconium, Akad. Nauk. SSSR Met., 1974, 5, p 104-109

  43. V.S. Sudavtsova, G.I. Batalin, and V.S. Tutevich, Thermodynamic Properties of Molten Binary Alloys in Systems Al-Zr (Nb, Mo), Izv. Akad. Nauk. SSSR Met., 1985, 5, p 185-187

  44. V. Witusiewicz, U.K. Stolz, I. Arpshofen, and F. Sommer, Thermodynamics of Liquid Al-Cu-Zr Alloys, Z. Metallkd., 1998, 89, p 704-713

  45. V.S. Sudavtsova and N.V. Podoprigora, Thermodynamic Properties of Melts in Al-TI (Zr, Hf) Binary Systems, Powder Metall. Met. Ceram., 2009, 48, p 83. https://doi.org/10.1007/s11106-009-9091-1

    Article  Google Scholar 

  46. K. Gajavalli, M. Barrachin, and P. Benigni, Determination of Solution Enthalpy of Zirconium in Liquid Aluminum, J. Chem. Thermodyn., 2019, 135, p 198-204. https://doi.org/10.1016/j.jct.2019.03.037

    Article  Google Scholar 

  47. A. Müller, The Al-Li Phase Diagram, Z. Metallkd., 1926, 18, p 231

    Google Scholar 

  48. A. Grube, L. Mohr, and W. Breuning, Elektrische Leitfähigkeit und Zustandsdiagramm bei binären Legierungen. 17. Mitteilung. Das System Lithium–Aluminium, Z. Elektrochem., 1935, 41, p 880-883. https://doi.org/10.1002/bbpc.19350411213

    Article  Google Scholar 

  49. F.I. Shamray and P.Ya. Saldau, Equilibrium Diagram of the System Al-Li, Izv. Akad. Nauk SSSR, Otd. Khim., 1937, 3, p 631-640

  50. K.M. Myles, F.C. Mrazek, J.A. Smaga and J.L. Settle, in Advanced Battery Research and Design, U.S. ERDA Report ANL-76-8, Proceedings of Symposium and Workshop, Argonne National Laboratory, B50 (cited from [7]), 1976

  51. E. Schürmann and H.J. Voss,  Investigation of the Melting Equilibria of Mg-Li-Al Alloys, Giessereiforschung, 1981, 33, p 33

  52. R.J. Pulham, P. Hubberstey, and P. Hemptenmacher, Solutions of Aluminum in Liquid Lithium: Contribution to the Li-Al Phase Diagram, JPE, 1994, 15, p 587-590. https://doi.org/10.1007/BF02647619

    Article  Google Scholar 

  53. K. Kishio and J.O. Brittain, Defect Structure of β-LiAl, J. Phys. Chem. Solids, 1979, 40, p 933-940. https://doi.org/10.1016/0022-3697(79)90121-5

    Article  ADS  Google Scholar 

  54. C.J. Wen, B.A. Boukamp, R.A. Huggins, and W. Weppner, Thermodynamic and Mass Transport Properties of “LiAl”, J. Electrochem. Soc., 1979, 126, p 2258-2266. https://doi.org/10.1149/1.2128939

    Article  ADS  Google Scholar 

  55. E. Veleckis, Thermodynamic Investigation of the Li-Al and Li-Pb Systems by the Hydrogen Titration Method, J. Less Common Met., 1980, 73, p 49-60. https://doi.org/10.1016/0022-5088(80)90342-2

    Article  Google Scholar 

  56. K. Amezawa, N. Yamamoto, Y. Tomii, and Y. Ito, Thermodynamic Properties and Single-Electrode Peltier Heats of a Li-Al Alloy in a LiCl-KCl Eutectic Melt, J. Electrochem. Soc., 1999, 146, p 1069-1099. https://doi.org/10.1149/1.1391722

    Article  ADS  Google Scholar 

  57. K.F. Tebbe, H.G. von Schnering, B. Rüter, and G. Rabeneck, Li3Al2, eine neue Phase im System Li/Al/Li3Al2, a New Phase in the System Li/Al, Z. Naturforsch. B, 1973, 28, p 600-605. https://doi.org/10.1515/znb-1973-9-1010

    Article  Google Scholar 

  58. D.A. Hansen and J.F. Smith, The Structure of Li9Al4, Acta Crystallogr. B, 1968, 24, p 913-918. https://doi.org/10.1107/S0567740868003407

    Article  Google Scholar 

  59. N.E. Christensen, Structural Phase Stability of B2 and B32 Intermetallic Compounds, Phys. Rev. B, 1985, 32, p 207-228. https://doi.org/10.1103/PhysRevB.32.207

    Article  ADS  Google Scholar 

  60. X.Q. Guo and R. Podloucky, Phase Stability and Bonding Characteristics of Li-rich Al-Li Intermetallic Compounds: Al2Li3 and Al4Li9, Phys. Rev. B, 1990, 42, p 10912-10923. https://doi.org/10.1103/PhysRevB.42.10912

    Article  ADS  Google Scholar 

  61. A. Arya, G.P. Das, H.G. Salunke, and S. Banerjee, Cohesive and Electronic Properties of Ordered Li-Al Intermetallic Compounds, J. Phys. Condens. Matter, 1994, 6, p 3389-3402. https://doi.org/10.1088/0953-8984/6/18/015

    Article  ADS  Google Scholar 

  62. M.H.F. Sluiter, Y. Watanabe, D. de Fontaine, and Y. Kawazoe, First-Principles Calculation of the Pressure Dependence of Phase Equilibria in the Al-Li System, Phys. Rev. B, 1996, 53, p 6137-6150. https://doi.org/10.1103/PhysRevB.53.6137

    Article  ADS  Google Scholar 

  63. N.P. Yao, L.A. Herédy, and R.C. Saunders, Emf Measurements of Electrochemically Prepared Lithium-Aluminum Alloy, J. Electrochem. Soc., 1971, 118, p 1039-1042. https://doi.org/10.1149/1.2408242

    Article  ADS  Google Scholar 

  64. W. Gąsior, A. Dębski, A. Góral, and R. Major, Enthalpy of Formation of Intermetallic Phases from Al-Li System by Solution and Direct Reaction Calorimetric Method, J. Alloys Compd., 2014, 586, p 703-708. https://doi.org/10.1016/j.jallcom.2013.10.143

    Article  Google Scholar 

  65. Y.F. Bychkov, A.N. Rozanov, and V.B. Yakovleva, Determination of the Solubility of Metals in Lithium, Soy. J. Atomic Energy, 1961, 7, p 987-992. https://doi.org/10.1007/BF01489559

    Article  Google Scholar 

  66. C.W. Bale, The Li-Zr (Lithium-Zirconium) System, Bull. Alloy Phase Diagr., 1987, 8, p 48-50. https://doi.org/10.1007/BF02868895

    Article  Google Scholar 

  67. A.T. Dinsdale, SGTE Data for Pure Elements, CALPHAD, 1991, 15, p 317-425. https://doi.org/10.1016/0364-5916(91)90030-N

    Article  Google Scholar 

  68. O. Redlich and A.T. Kister, Algebraic Representation of Thermodynamic Properties and the Classification of Solutions, J. Ind. Eng. Chem., 1948, 40, p 345-348. https://doi.org/10.1021/ie50458a036

    Article  Google Scholar 

  69. W. Kohn and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev., 1965, 140, p A1133-A1138. https://doi.org/10.1103/PhysRev.140.A1133

    Article  ADS  MathSciNet  Google Scholar 

  70. G. Kresse and J. Furthmueler, Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set, Phys. Rev. B, 1996, 54, p 11169-11186. https://doi.org/10.1103/PhysRevB.54.11169

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from National Natural Science Foundation of China (51971189).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohui Long.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, Z., Cui, D., Hu, H. et al. Thermodynamic Modeling of the Al-Li-Zr Ternary System. J. Phase Equilib. Diffus. 41, 623–641 (2020). https://doi.org/10.1007/s11669-020-00827-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-020-00827-z

Keywords

Navigation