Skip to main content

Advertisement

Log in

Cadmium Oxide-Zinc Oxide Nanocomposites Synthesized Using Waste Eggshell Membrane and Its In-Vitro Assessments of the Antimicrobial Activities and Minimum Inhibitory Concentration

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The following study was performed chiefly to analyze the antimicrobial activity of CdO/ZnO-ESM nanocomposites. A unique method was used for the synthesis of CdO/ZnO-ESM nanocomposites using an eggshell membrane as a bio-template which acts as both reducing and stabilizing agents; whereas cadmium nitrate and zinc nitrate were employed as metal precursors. The prepared samples were characterized by the following techniques such as TGA, PXRD, DRS–UV–Visible reflectance, FT-IR, HR-SEM, EDAX, Zeta potential, and Photoluminescence analysis. The prepared samples were subsequently tested for antimicrobial activity against Gram-positive bacteria (Staphylococcus aureus and Bacillus sp.) and Gram-negative bacteria (Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, Salmonella enterica, and Vibrio sp.) using agar well diffusion method. The minimum inhibitory concentration was determined by the broth microdilution method. The maximum inhibition zone of 24 mm, was observed in Salmonella enterica at a concentration (30 μg/mL) of CdO/ZnO-ESM nanocomposites, while the highest MIC value was observed in Bacillus sp. at a concentration (1.95 μg/mL) of these nanocomposites. The result of this study showed that CdO/ZnO-ESM nanocomposites have an exceptional antimicrobial activity against both Gram-positive and Gram-negative bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib, A. Memic, Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int. J. Nanomed. 7, 6003–6009 (2012). https://doi.org/10.2147/ijn.s35347

    Article  CAS  Google Scholar 

  2. V. Staníc, S.B. Tanaskovíc, Antibacterial activity of metal oxide nanoparticles. Nanotoxicity 11, 241–274 (2020). https://doi.org/10.1016/B978-0-12-819943-5.00011-7

    Article  Google Scholar 

  3. R. Kumar, A. Umar, G. Kumar, H.S. Nalwa, Antimicrobial properties of nanomaterials: a review. Ceram. Int. 43, 3940–3961 (2017). https://doi.org/10.1016/j.ceramint.2016.12.062

    Article  CAS  Google Scholar 

  4. K. Kannan, D. Radhika, K.K. Sadasivuni, K. Raghava-Reddy, A.V. Raghu, Nanostructured metal oxides and its hybrids for biomedical applications. Adv. Coll. Interface. Sci. 281, 102178 (2020). https://doi.org/10.1016/j.cis.2020.102178

    Article  CAS  Google Scholar 

  5. S. Cheemadan, M. Krishnan, A.J. Rathinam, M.C.S. Kumar, Biocidal properties of sputtered CdO:ZnO multi-component thin films for potential use in pathogenic bacteria control. Mater. Res. Express 6, 104009 (2019). https://doi.org/10.1088/2053-1591/ab3cbe

    Article  CAS  Google Scholar 

  6. E. Khalili, S.A. Hassanzadeh Tabrizi, ZnO-CdO nanocomposite: microemulsion synthesis and dye removal ability. J. Sol-Gel Sci. Technol. 81, 475–482 (2016). https://doi.org/10.1007/s10971-016-4211-0

    Article  CAS  Google Scholar 

  7. A.H. Hateem, T. Ekhlass, W.M. Mohammed, M.M. Saleh, Green synthesis of CdO nanoparticles by olive leaf extract and their biological effectiveness. Res. J. Chem. Environ. 23(1), 138–141 (2019)

    Google Scholar 

  8. T.V.M. Sreekanth, M. Pandurangan, G.R. Dillip, D.H. Kim, Y.R. Lee, Toxicity and efficacy of CdO nanostructures on the MDCK and Caki-2cells. J. Photochem. Photobiol. B 164, 174–181 (2016). https://doi.org/10.1016/j.jphotobiol.2016.09.028

    Article  CAS  PubMed  Google Scholar 

  9. T. Bhuyan, K. Mishra, M. Khanuja, R. Prasad, A. Varma, Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater. Sci. Semicond. Process. 32, 55–61 (2015). https://doi.org/10.1016/j.mssp.2014.12.053

    Article  CAS  Google Scholar 

  10. N.M. Al-Hada, H. Mohamed Kamari, C.A.C. Abdullah, E. Saion, A.H. Shaari, Z.A. Talib, K.A. Matori, Down-top nanofabrication of binary (CdO)x (ZnO)1–x nanoparticles and their antibacterial Activity. Int. J. Nanomed. 12, 8309–8323 (2017). https://doi.org/10.2147/IJN.S150405

    Article  CAS  Google Scholar 

  11. K. Karthik, S. Dhanuskodi, C. Gobinath, S. Sivaramakrishnan, Microwave-assisted synthesis of CdO-ZnO nanocomposite and its antibacterial activity against human pathogens. Spectrochim. Acta A 139, 7–12 (2014). https://doi.org/10.1016/j.saa.2014.11.079

    Article  CAS  Google Scholar 

  12. E. Mosquera, I. del Pozo, M. Morel, Structure and red shift of optical band gap in CdO–ZnO nanocomposite synthesized by the sol gel method. J. Solid-State Chem. 206, 265–271 (2013). https://doi.org/10.1016/j.jssc.2013.08.025

    Article  CAS  Google Scholar 

  13. C.V. Reddy, B. Babu, J. Shim, Synthesis, optical properties and efficient photocatalytic activity of CdO/ZnO hybrid nanocomposite. J. Phys. Chem. Solids 112, 20–28 (2018). https://doi.org/10.1016/j.jpcs.2017.09.003

    Article  CAS  Google Scholar 

  14. S. Rajaboopathi, S. Thambidurai, Green synthesis of seaweed surfactant based CdO-ZnO nanoparticles for better thermal and photocatalytic activity. Curr. Appl. Phys. 17(12), 1622–1638 (2017). https://doi.org/10.1016/j.cap.2017.09.006

    Article  Google Scholar 

  15. M.M. Raman, S.B. Khan, H.M. Marwani, A.M. Asiri, K.A. Alarmy, M.A. Rub, A. Khan, A.A.P. Khan, N. Azum, Facile synthesis of doped ZnO-CdO nanotubes as solid phase adsorbent and efficient solar photo-catalyst applications. J. Ind. Eng. Chem. 20(4), 1622–1638 (2013). https://doi.org/10.1016/j.jiec.2013.09.059

    Article  CAS  Google Scholar 

  16. P. Margan, M. Haghighi, Sono-coprecipitation synthesis and physicochemical characterization of CdO-ZnO nanophotocatalyst for removal of acid orange 7 from wastewater. Ultrason. Sonochem. 40, 323–332 (2017). https://doi.org/10.1016/j.ultsonch.2017.07.003

    Article  CAS  PubMed  Google Scholar 

  17. M. Mahendiran, J.J. Mathen, M. Racik, J. Madhavan, M.V. Antony-Raj, Investigation of structural, optical and electrical properties of transition metal oxide semiconductor CdO-ZnO nanocomposite and its effective role in the removal of water contaminants. J. Phys. Chem. Solids 126, 322–334 (2018). https://doi.org/10.1016/j.jpcs.2018.11.012

    Article  CAS  Google Scholar 

  18. B.O. Godfrey, W.B. Henry, Structural and optical characterization of CdO-ZnO nanocomposite deposited by sol-gel method. Int. Res. J. Multidiscip. Sci. Technol. 2(3), 15–19 (2018)

    Google Scholar 

  19. Z.N. Abdul-Ameer, I.R. Agool, Structural and optical properties of ZnO-CdO nanocomposite using electrodeposition method. Int. Lett. Chem. Phys. Astronomy 63, 127–133 (2016)

    Article  Google Scholar 

  20. C. Karunakaran, A. Vijayabalan, P. Vinayagamoorthy, CdO-implanted hexagonal ZnO nanoplatelets: red-shifted emission and enhanced charge carrier-resistance and bacteria-inactivation. Appl. Phys. A 125, 14 (2019). https://doi.org/10.1007/s00339-018-2318-6

    Article  CAS  Google Scholar 

  21. P. Senthil Kumar, M. Selvakumar, P. Bhagabati, B. Bharathi, S. Karuthapandian, S. Balakumar, CdO/ZnO nanohybrids: Facile synthesis and morphologically enhanced photocatalytic performance. RSC Adv. 4, 32977–32986 (2014). https://doi.org/10.1039/C4RA02502D

    Article  CAS  Google Scholar 

  22. S.P. Meshram, J.D. Ambekar, I.S. Mulla, D.P. Amalnerkar, P.V. Adhyapak, Synthesis and characterization of CdO–ZnO nanocomposite for degradation of reactive red 198 under ultrasound irradiation. J. Nanoeng. Nanomanuf. 4, 127–134 (2014). https://doi.org/10.1166/jnan.2014.1181

    Article  CAS  Google Scholar 

  23. J.K. Rajput, T.K. Pathak, V. Kumar, H.C. Swart, L.P. Purohit, Liquid petroleum gas sensing application of ZnO/CdO:ZnO nanocomposite at low temperature. AIP Conf. Proc. 2018, 80035 (1942). https://doi.org/10.1063/1.5028869

    Article  CAS  Google Scholar 

  24. R. Saravanan, F. Gracia, M.M. Khan, V. Poornima, V.K. Gupta, V. Narayanan, A. Stephenh, ZnO/CdO nanocomposite for textile effluent degradation and electrochemical detection. J. Mol. Liq. 209, 374–380 (2015). https://doi.org/10.1016/j.molliq.2015.05.040

    Article  CAS  Google Scholar 

  25. G. Somasundaram, J. Rajana, J. Poul, Effect of calcination process on CdO-ZnO nanocomposite by honey-assisted combustion method for antimicrobial performances. Toxicol. Res 7, 779–879 (2018). https://doi.org/10.1039/C8TX00059J

    Article  CAS  Google Scholar 

  26. S.S. Khan, Enhancement of visible light photocatalytic activity of CdO modified ZnO nanohybrid particles. J. Photochem. Photobiol. B 142, 1–7 (2014). https://doi.org/10.1016/j.jphotobiol.2014.11.001

    Article  CAS  Google Scholar 

  27. A. Umar, M.S. Akhtar, M.S. Al-Assiri, A.E. Al-Salami, S.H. Kim, Composite CdO-ZnO hexagonal nanocones: efficient materials for photovoltaic and sensing applications. Ceram. Int. 44, 5 (2017). https://doi.org/10.1016/j.ceramint.2017.12.098

    Article  CAS  Google Scholar 

  28. R.A. Zargar, A.H. Shah, M. Arora, F.A. Mir, Crystallographic, spectroscopic and electrical study of ZnO:CdO nanocomposite-coated films for photovoltaic applications. Arab. J. Sci. Eng. 44, 6631–6636 (2019). https://doi.org/10.1007/s13369-019-03823-9

    Article  CAS  Google Scholar 

  29. T. Sinha, M. Ahmaruzzaman, High-value utilization of egg shell to synthesize Silver and Gold-Silver core shell nanoparticles and their application for the degradation of hazardous dyes from aqueous phase-A green approach. J. Colloid Interface Sci. 453, 115–131 (2015). https://doi.org/10.1016/j.jcis.2015.04.053

    Article  CAS  PubMed  Google Scholar 

  30. J. Celina Selvakumari, S.T. Nishanthi, J. Dhanalakshmi, M. Ahila, D. Pathinettam Padiyan, Bio-active synthesis of tin oxide nanoparticles using eggshell membrane for energy storage application. Appl. Surf. Sci. 441, 530–537 (2018). https://doi.org/10.1016/j.apsusc.2018.02.043

    Article  CAS  Google Scholar 

  31. S. Albohani, M.M. Sundaram, D.W. Laird, Egg shell membrane template stabilises formation of β-NiMoO4 nanowires and enhances hybrid supercapacitor behaviour. Mater. Lett. 236, 64–68 (2019). https://doi.org/10.1016/j.matlet.2018.10.034

    Article  CAS  Google Scholar 

  32. P.S. Devi, S. Banerjee, S.R. Chowdhury, G.S. Kumar, Eggshell membrane: a natural biotemplate to synthesize fluorescent gold nanoparticles. RSC Adv. 2, 11578–11585 (2012). https://doi.org/10.1039/C2RA21053C

    Article  CAS  Google Scholar 

  33. B. Zheng, L. Qian, H. Yuan, D. Xiaoa, X. Yangc, M.C. Paaud, M.M.F. Choid, Preparation of gold nanoparticles on eggshell membrane and their biosensing application. Talanta 82(1), 177–183 (2010). https://doi.org/10.1016/j.talanta.2010.04.014

    Article  CAS  PubMed  Google Scholar 

  34. Q. Dong, Su Huilan, Di Zhang, Na Zhu, X. Guo, Biotemplate-directed assembly of porous SnO2 nanoparticles into tubular hierarchical structures. Scr. Mater. 55(9), 799–802 (2006). https://doi.org/10.1016/j.scriptamat.2006.07.012

    Article  CAS  Google Scholar 

  35. S. Fan, M. Zhao, L. Ding, J. Liang, J. Chen, Y. Li, S. Chen, Synthesis of 3Dhierarchical porous Co3O4 film by egg shell membrane for non-enzymatic glucose detection. J. Electroanal. Chem. 775, 52–57 (2016). https://doi.org/10.1016/j.jelechem.2016.05.035

    Article  CAS  Google Scholar 

  36. J. Li, D. Zhai, F. Lv, Yu Qingqing, H. Ma, J. Yin, Z. Yi, M. Liu, J. Chang, Wu Chengtie, Preparation of copper-containing bioactive glass/eggshell membrane nanocomposite for improving angiogenesis, antibacterial activity and wound healing. Acta Biomater. 36, 254–266 (2016). https://doi.org/10.1016/j.actbio.2016.03.011

    Article  CAS  PubMed  Google Scholar 

  37. M. Liang, Su Rongxin, W. Qi, Yu Yanjun, L. Wang, Z. He, Synthesis of well-dispersed Ag nanoparticles on eggshell membrane for catalytic reduction of 4-nitrophenol. J. Mater. Sci. 49, 1639–1647 (2014). https://doi.org/10.1007/s10853-013-7847-y

    Article  CAS  Google Scholar 

  38. M. Prekajski, B. Babic, D. Bucevac, J. Pantíc, J. Gulicovski, M. Miljkovic, B. Matovíc, Synthesis and characterization of biomorphic CeO2 obtained by using egg shell membrane as template. Process. Appl. Ceram. 8(2), 81–85 (2014). https://doi.org/10.2298/PAC1402081P

    Article  CAS  Google Scholar 

  39. Qi Wang, C. Ma, J. Tang, C. Zhang, L. Ma, Eggshell membrane-templated MnO2 nanoparticles: facile synthesis and tetracycline hydrochloride decontamination. Nanoscale Res. Lett. 13, 255 (2018). https://doi.org/10.1186/s11671-018-2679-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. R. Camaratta, A.N. Correia-Lima, M.D. Reyes, M.A. Hernández-Fenollosa, J. Orozco-Messana, C.P. Bergmann, Microstructural evolution and optical properties of TiO2 synthesized by eggshell Membrane templating for DSSCs application. Mater. Res. Bull. 48(4), 1569–1574 (2013). https://doi.org/10.1016/j.materresbull.2012.12.047

    Article  CAS  Google Scholar 

  41. Q. Dong, H. Su, J. Xu, D. Zhang, R. Wang, Synthesis of biomorphic ZnO interwoven microfibers using eggshell membrane as the biotemplate. Mater. Lett. 61(13), 2714–2717 (2007). https://doi.org/10.1016/j.matlet.2006.06.091

    Article  CAS  Google Scholar 

  42. N. Song, H. Jiang, T. Cui, L. Chang, X. Wang, Synthesis and enhanced gas-sensing properties of mesoporous hierarchical α-Fe2O3 architectures from an eggshell membrane. Micro Nano Lett. 7(9), 943–946 (2012). https://doi.org/10.1049/mnl.2012.0631

    Article  CAS  Google Scholar 

  43. X. He, D.-P. Yanga, X. Zhang, M. Liu, Z. Kang, C. Lin, N. Jia, R. Luque, Waste eggshell membrane-templated CuO-ZnO nanocomposite with enhanced adsorption, catalysis and antibacterial properties for water purification. Chem. Eng. J. 369, 621–633 (2019). https://doi.org/10.1016/j.cej.2019.03.047

    Article  CAS  Google Scholar 

  44. C. Vlgas, S. Machado-de-Souza, E.F.A. Smania, A. Smania Jr., Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol. 38, 369–380 (2007). https://doi.org/10.1590/S1517-83822007000200034

    Article  Google Scholar 

  45. S.D. Sarker, L. Nahar, Y. Kumarasamy, Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 42, 321–324 (2007). https://doi.org/10.1016/j.ymeth.2007.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. N. Thovhogi, E. Park, E. Manikandan, M. Maaza, A. Gurib-Fakim, Physical properties of CdO nanoparticles synthesized by green chemistry via Hibiscus Sabdariffa flower extract. J. Alloys Compd. 655, 314–320 (2016). https://doi.org/10.1016/j.jallcom.2015.09.063

    Article  CAS  Google Scholar 

  47. P. Senthil Kumar, M. Selvakumar, S. Ganesh-Babu, S. Karuthapandian, S. Chattopadhyay, P. Senthil Kumar, M. Selvakumar, S. Ganesh Babu, S. Karuthapandian, S. Chattopadhyay, CdO nanospheres: Facile synthesis and bandgap modification for the superior photocatalytic activity. Mater. Lett. 151, 45–48 (2015). https://doi.org/10.1016/j.matlet.2015.03.047

    Article  CAS  Google Scholar 

  48. N.C.S. Selvam, R.T. Kumar, K. Yogeenth, L. John-Kennedy, G. Sekaran, J. Judith Vijaya, Simple and rapid synthesis of cadmium oxide (CdO) nanospheres by a microwave-assisted combustion method. Powder Technol. 211(2–3), 250–255 (2011). https://doi.org/10.1016/j.powtec.2011.04.031

    Article  CAS  Google Scholar 

  49. N.D. Krupa, R. Vimala, Evaluation of tetraethoxysilane (TEOS) sol–gel coatings, modified with green synthesized zinc oxide nanoparticles for combating microfouling. Mater. Sci. Eng. C 61, 728–735 (2016). https://doi.org/10.1016/j.msec.2016.01.013

    Article  CAS  Google Scholar 

  50. S. Jafarirad, M. Mehrabi, B. Divband, M. Kosari-Nasab, Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: a mechanistic approach. Mater. Sci. Eng. C 59, 296–302 (2016). https://doi.org/10.1016/j.msec.2015.09.089

    Article  CAS  Google Scholar 

  51. N. Supraja, T.N. Prasad, T. Giridhara-Krishna, E. David, Synthesis, characterization, and evaluation of the antimicrobial efficacy of Boswellia ovalifoliolata stem bark-extract-mediated zinc oxide nanoparticles. Appl. Nanosci. 6, 581–590 (2016). https://doi.org/10.1007/s13204-015-0472-0

    Article  CAS  Google Scholar 

  52. K. Qi, B. Cheng, Yu Jiaguo, W. Ho, Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J. Alloys Compd. 727, 792–820 (2017). https://doi.org/10.1016/j.jallcom.2017.08.142

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author, Dr. K. Venkatachalam gratefully acknowledges the financial assistance from the Department of Science and Technology, India for the DST-SERB Project (Ref. No. EEQ/2016/000559, Date.: 06.02.2017).

Author information

Authors and Affiliations

Authors

Contributions

PSSS—conceptualization; methodology; formal analysis; investigation; writing original draft preparation; writing-review and editing. GSC—investigation and methodology. DG—data curation. PP—providing laboratory for testing antimicrobial activity. VK—funding acquisition; visualization; supervision and project administration.

Corresponding author

Correspondence to Venkatachalam Kandan.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundara Selvam, P.S., Chinnadurai, G.S., Ganesan, D. et al. Cadmium Oxide-Zinc Oxide Nanocomposites Synthesized Using Waste Eggshell Membrane and Its In-Vitro Assessments of the Antimicrobial Activities and Minimum Inhibitory Concentration. J Inorg Organomet Polym 31, 816–835 (2021). https://doi.org/10.1007/s10904-020-01688-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01688-2

Keywords

Navigation