Skip to main content
Log in

In silico characterization and expression of disease-resistance-related genes within the collinear region of Brassica napus blackleg resistant locus LepR1′ in B. oleracea

  • Host Responses
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

Abstract

Blackleg is a devastating disease of cabbage (C genome), but so far, only a few resistant cabbage lines have been identified, and the resistance-related genes are yet to be identified. In contrast, numerous R loci have been mapped to the A or B genome. High ancestral synteny among Brassicaceae genomes suggest that homologous regions of R loci in the A or B genome may contain functional R gene(s) in the C genome. Here, we investigated the collinear region of a major Brassica napus R locus, LepR1′, in Brassica oleracea to identify genes of putative disease resistance class via comprehensive in silico analysis. The LepR1′ locus is collinear to a 17.29-Mbp region in chromosome C02 of Brassica oleracea and hosted a total of 1,392 genes, and 36 of these genes contained NBS, LRR, TIR, F-box and RLK domains. The expression of these 36 genes was profiled using qRT-PCR in the cotyledons of resistant (SCNU-03) and susceptible (SCNU-59) lines at 0, 6, 24, and 48 h after inoculation with Leptosphaeria maculans isolates 00–100s and 03–02s having the corresponding avirulent gene, AvrLep1. Among these genes, a cluster of 10 genes were differentially expressed. NBS-LRR gene Bo2g131620 had a 45-bp insertion/deletion (indel) mutation in the 3rd intron between resistant and susceptible lines. The higher expression in resistant lines against both isolates and the indel mutation in Bo2g131620 suggest that these genes may have roles in blackleg resistance in cabbage. Mapping and functional analysis will be necessary to validate such a role. Saturating the region with enough markers is recommended during mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abuyusuf M, Nath UK, Kim H, Islam MR, Park J-I, Nou IS (2019) Molecular markers based on sequence variation in BoFLC1.C9 for characterizing early- and late-flowering cabbage genotypes. BMC Genet 20:42

    PubMed  PubMed Central  Google Scholar 

  • Alamery S, Tirnaz S, Bayer P, Tollenaere R, Chaloub B, Edwards D, Batley J (2018) Genome-wide identification and comparative analysis of NBS-LRR resistance genes in Brassica napus. Crop Pasture Sci 69:79–93

    Google Scholar 

  • Ananga AO, Cebert E, Soliman K, Kantety R, Pacumbaba RP, Konan K (2006) RAPD markers associated with resistance to blackleg disease in Brassica species. Afr J Biotechnol 5:2041–2048

    CAS  Google Scholar 

  • Badawy HMA, Hoppe HH, Koch E (1991) Differential reactions between the genus Brassica and aggressive single spore isolates of Leptosphaeria maculans. J Phytopathol 131:109–119

    Google Scholar 

  • Bailey TL, Johnson J, Grant CE, Noble WS (2015) The MEME suite. Nucleic Acids Res 43:W39–W49

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ballvora A, Ercolano MR, Weiß J, Meksem K, Bormann CA, Oberhagemann P, Salamini F, Gebhardt C (2002) The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. Plant J 30:361–371

    CAS  PubMed  Google Scholar 

  • Bayer PE, Golicz AA, Tirnaz S, Chan C-KK, Edwards D, Batley J (2019) Variation in abundance of predicted resistance genes in the Brassica oleracea pangenome. Plant Biotechnol J 17:789–800. https://doi.org/10.1111/pbi.13015

    Article  CAS  PubMed  Google Scholar 

  • Chalhoub B, Denoeud F, Liu S, Chalhoub B, Denoeud F, Liu S, Parkin IAP, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Silva CD, Just J, Falentin C, Koh CS, Clainche IL, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Paslier M-CL, Fan G, Renault V, Bayer PE, Golicz AA, Manoli S, Lee T-H, Thi VFD, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom CHD, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim YP, Lyons E, Town CD, Bancroft I, Wang X, Meng J, Ma J, Pires JC, King GJ, Brunel D, Delourme R, Renard M, AuryJ-M AKL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou Y, Hua W, Sharpe AG, Paterson AH, Guan C, Wincker P (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953

    CAS  PubMed  Google Scholar 

  • Cheng F, Wu J, Fang L, Wang X (2012) Syntenic gene analysis between Brassica rapa and other Brassicaceae species. Front Plant Sci 3:198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng F, Mandáková T, Wu J, Xie Q, Lysak MA, Wang X (2013) Deciphering the diploid ancestral genome of the mesohexaploid Brassica rapa. Plant Cell 25:1541–1554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng F, Wu J, Wang X (2014) Genome triplication drove the diversification of Brassica plants. Hortic Res 1:115–120

    Google Scholar 

  • Chorev M, Carmel L (2012) The function of introns. Front Genet 3:55

    PubMed  PubMed Central  Google Scholar 

  • Christianson JA, Rimmer SR, Good AG, Lydiate DJ (2006) Mapping genes for resistance to Leptosphaeria maculans in Brassica juncea. Genome 41:30–41

    Google Scholar 

  • Crouch JH, Lewis BG, Mithen RF (1994) The effect of A genome substitution on the resistance of Brassica napus to infection by Leptosphaeria maculans. Plant Breed 112:265–278

    CAS  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    CAS  PubMed  Google Scholar 

  • Delourme R, Pilet-Nayel ML, Archipiano M, Horvais R, Tanguy X, Rouxel T, Brun H, Renard M, Balesdent MH (2004) A cluster of major specific resistance genes to Leptosphaeria maculans in Brassica napus. Phytopathology 94:578–583

    CAS  PubMed  Google Scholar 

  • Delourme R, Chevre AM, Brun H, Rouxel T, Balesdent MH, Dias JS, Salisbury P, Renard M, Rimmer SR (2006) Major gene and polygenic resistance to Leptosphaeria maculans in oilseed rape (Brassica napus). Eur J Plant Pathol 114:41–52

    Google Scholar 

  • Delourme R, Laperche A, Bouchet A-S, Jubault M, Paillard S, Manzanares-Dauleux M-J, Nesi N (2018) Genes and quantitative trait loci mapping for major agronomic traits in Brassica napus L. In: The Brassica napus genome. Springer International Publishing, Cham, pp 41–85

  • Delwiche PA (1980) Genetic aspects of blackleg (Leptosphaeria maculans) resistance in rapeseed (Brassia napus). PhD dissertation, University of Wisconsin, Madison

  • Dilmaghani A, Balesdent MH, Rouxel T, Moreno-Rico O (2010) First report of Leptosphaeria biglobosa (blackleg) on Brassica oleracea (cabbage) in Mexico. Plant Dis 94:791

    CAS  PubMed  Google Scholar 

  • Ding G, Zhao Z, Liao Y, Hu Y, Shi L, Long Y, Xu F (2012) Quantitative trait loci for seed yield and yield-related traits, and their responses to reduced phosphorus supply in Brassica napus. Ann Bot 109:747–759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eitas TK, Dangl JL (2010) NB-LRR proteins: pairs, pieces, perception, partners, and pathways. Curr Opin Plant Biol 13:472–477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis J, Dodds P, Pryor T (2000) Structure, function and evolution of plant disease resistance genes. Curr Opin Plant Biol 3:278–284

    CAS  PubMed  Google Scholar 

  • Ferreira ME, Dias JS, Mengistu A, Williams PH (1992) Screening of Portuguese cole landraces (Brassica oleracea L.) with Leptosphaeria maculans and Xanthomonas campestris pv. campestris. Euphytica 65:219–227

    Google Scholar 

  • Fitt BDL, Brun H, Barbetti MJ, Rimmer SR (2006) World-wide importance of phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape (Brassica napus). Eur J Plant Pathol 114:3–15

    Google Scholar 

  • Fitt BDL, Hu BC, Li ZQ, Liu SY, Lange RM, Kharbanda PD, Butterworth MH, White RP (2008) Strategies to prevent spread of Leptosphaeria maculans (phoma stem canker) onto oilseed rape crops in China; costs and benefits. Plant Pathol 57:652–664

    Google Scholar 

  • Franzke A, Lysak MA, Al-Shehbaz IA, Koch MA, Mummenhoff K (2011) Cabbage family affairs: the evolutionary history of Brassicaceae. Trends Plant Sci 16:108–116

    CAS  PubMed  Google Scholar 

  • Fu Y, Zhang Y, Mason AS, Lin B, Zhang D, Yu H, Fu D (2019) NBS-encoding genes in Brassica napus evolved rapidly after allopolyploidization and co-localize with known disease resistance loci. Front Plant Sci 10:26

    PubMed  PubMed Central  Google Scholar 

  • Fudal I, Ross S, Gout L, Blaise F, Kuhn ML, Eckert MR, Cattolico L, Bernard-Samain S, Balesdent MH, Rouxel T (2007) Heterochromatin-like regions as ecological niches for avirulence genes in the Leptosphaeria maculans genome: map-based cloning of AvrLm6. Mol Plant Microbe Interact 20:459–470

    CAS  PubMed  Google Scholar 

  • Goff KE, Ramonell KM (2007) The role and regulation of receptor-like kinases in plant defense. Gene Regul Syst Biol 1:167–175

    Google Scholar 

  • Gómez-Gómez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011

    PubMed  Google Scholar 

  • Haddadi P, Larkan NJ, Borhan MH (2019) Dissecting R gene and host genetic background effect on the Brassica napus defense response to Leptosphaeria maculans. Sci Rep 9:6947

    PubMed  PubMed Central  Google Scholar 

  • Harris CJ, Slootweg EJ, Goverse A, Baulcombe DC (2013) Stepwise artificial evolution of a plant disease resistance gene. Proc Natl Acad Sci USA 110:21189–21194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hatakeyama K, Suwabe K, Tomita RN, Kato T, Nunome T, Fukuoka H, Matsumoto S (2013) Identification and characterization of Crr1a, a gene for resistance to clubroot disease (Plasmodiophora brassicae Woronin) in Brassica rapa L. PLoS ONE 8:e54745

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong S-K, Kim W-G, Shin D-B, Choi HW, Lee YK, Lee SY (2009) Occurrence of stem canker on rape caused by Leptosphaeria biglobosa in Korea. Plant Pathol J 25:294–298

    Google Scholar 

  • Hu B, Jin J, Guo A-Y, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297

    PubMed  Google Scholar 

  • Hulbert SH, Webb CA, Smith SM, Sun Q (2001) Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 39:285–312

    CAS  PubMed  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    CAS  PubMed  Google Scholar 

  • Kato T, Hatakeyama K, Fukino N, Matsumoto S (2013) Fine mapping of the clubroot resistance gene CRb and development of a useful selectable marker in Brassica rapa. Breed Sci 63:116–124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SH, Kwon SI, Saha D, Anyanwu NC, Gassmann W (2009) Resistance to the Pseudomonas syringae effector HopA1 is governed by the TIR-NBS-LRR protein RPS6 and is enhanced by mutations in SRFR1. Plant Physiol 150:1723–1732

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kourelis J, van der Hoorn RAL (2018) Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell 30:285–299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larkan NJ, Lydiate DJ, Parkin IA, Nelson MN, Epp DJ, Cowling WA, Rimmer SR, Borhan MH (2013) The Brassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the Leptosphaeria maculans effector AVRLM1. New Phytol 197:595–605

    CAS  PubMed  Google Scholar 

  • Larkan NJ, Ma L, Borhan MH (2015) The Brassica napus receptor-like protein RLM2 is encoded by a second allele of the LepR3/Rlm2 blackleg resistance locus. Plant Biotechnol J 13:983–992

    CAS  PubMed  Google Scholar 

  • Leflon M, Brun H, Eber F, Delourme R, Lucas MO, Vallée P, Ermel M, Balesdent MH, Chèvre AM (2007) Detection, introgression and localization of genes conferring specific resistance to Leptosphaeria maculans from Brassica rapa into B. napus. Theor Appl Genet 115:897–906

    CAS  PubMed  Google Scholar 

  • Li J, Zhao Z, Hayward A, Cheng H, Fu D (2015) Integration analysis of quantitative trait loci for resistance to Sclerotinia sclerotiorum in Brassica napus. Euphytica 205:483–489

    CAS  Google Scholar 

  • Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin IA, Zhao M, Ma J, Yu J, Huang S, Wang X, Wang J, Lu K, Fang Z, Bancroft I, Yang TJ, Hu Q, Wang X, Yue Z, Li H, Yang L, Wu J, Zhou Q, Wang W, King GJ, Pires JC, Lu C, Wu Z, Sampath P, Wang Z, Guo H, Pan S, Yang L, Min J, Zhang D, Jin D, Li W, Belcram H, Tu J, Guan M, Qi C, Du D, Li J, Jiang L, Batley J, Sharpe AG, Park BS, Ruperao P, Cheng F, Waminal NE, Huang Y, Dong C, Wang L, Li J, Hu Z, Zhuang M, Huang Y, Huang J, Shi J, Mei D, Liu J, Lee TH, Wang J, Jin H, Li Z, Li X, Zhang J, Xiao L, Zhou Y, Liu Z, Liu X, Qin R, Tang X, Liu W, Wang Y, Zhang Y, Lee J, Kim HH, Denoeud F, Xu X, Liang X, Hua W, Wang X, Wang J, Chalhoub B, Paterson AH (2014a) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930

    CAS  PubMed  Google Scholar 

  • Liu Z, Latunde-Dada AO, Hall AM, Fitt BDL (2014b) Phoma stem canker disease on oilseed rape (Brassica napus) in China is caused by Leptosphaeria biglobosa ‘brassicae’. Eur J Plant Pathol 140:841–857

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Long Y, Wang Z, Sun Z, Fernando DW, McVetty PB, Li G (2011) Identification of two blackleg resistance genes and fine mapping of one of these two genes in a Brassica napus canola cultivar ‘Surpass 400’. Theor Appl Genet 122:1223–1231

    PubMed  Google Scholar 

  • Lv S, Changwei Z, Tang J, Li Y, Wang Z, Jiang D, Hou X (2015) Genome-wide analysis and identification of TIR-NBS-LRR genes in Chinese cabbage (Brassica rapa ssp. pekinensis) reveal expression patterns to TuMV infection. Physiol Mol Plant Pathol 90:89–97

    CAS  Google Scholar 

  • Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH (2010) CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 39:D225–D229

    PubMed  PubMed Central  Google Scholar 

  • Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809–834

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morillo SA, Tax FE (2006) Functional analysis of receptor-like kinases in monocots and dicots. Curr Opin Plant Biol 9:460–469

    CAS  PubMed  Google Scholar 

  • Murat F, Louis A, Maumus F, Armero A, Cooke R, Quesneville H, Roest Crollius H, Salse J (2015) Understanding Brassicaceae evolution through ancestral genome reconstruction. Genome Biol 16:262

    PubMed  PubMed Central  Google Scholar 

  • Neik TX, Barbetti MJ, Batley J (2017) Current status and challenges in identifying disease resistance genes in Brassica napus. Front Plant Sci 8:1788

    PubMed  PubMed Central  Google Scholar 

  • Parker JE, Coleman MJ, Szabò V, Frost LN, Schmidt R, van der Biezen EA, Moores T, Dean C, Daniels MJ, Jones JD (1997) The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6. Plant Cell 9:879–894

    CAS  PubMed  PubMed Central  Google Scholar 

  • Plieske J, Struss D, Röbbelen G (1998) Inheritance of resistance derived from the B-genome of Brassica against Phoma lingam in rapeseed and the development of molecular markers. Theor Appl Genet 97:929–936

    CAS  Google Scholar 

  • Raman R, Taylor B, Lindbeck K, Coombes N, Barbulescu D, Salisbury P, Raman H (2012) Molecular mapping and validation of Rlm1 gene for resistance to Leptosphaeria maculans in canola (Brassica napus L.). Crop Pasture Sci 63:1007–1017

    CAS  Google Scholar 

  • Robin AHK, Larkan NJ, Laila R, Park J-I, Ahmed NU, Borhan H, Parkin IAP, Nou I-S (2017) Korean Brassica oleracea germplasm offers a novel source of qualitative resistance to blackleg disease. Eur J Plant Pathol 149:611–623

    Google Scholar 

  • Rose AB (2004) The effect of intron location on intron-mediated enhancement of gene expression in Arabidopsis. Plant J 40:744–751

    CAS  PubMed  Google Scholar 

  • Schultz J, Copley RR, Doerks T, Ponting CP, Bork P (2000) SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res 28:231–234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sinapidou E, Williams K, Nott L, Bahkt S, Tör M, Crute I, Bittner-Eddy P, Beynon J (2004) Two TIR:NB:LRR genes are required to specify resistance to Peronospora parasitica isolate Cala2 in Arabidopsis. Plant J 38:898–909

    CAS  PubMed  Google Scholar 

  • Stein A, Wittkop B, Liu L, Obermeier C, Friedt W, Snowdon RJ (2013) Dissection of a major QTL for seed colour and fibre content in Brassica napus reveals colocalization with candidate genes for phenylpropanoid biosynthesis and flavonoid deposition. Plant Breed 132:382–389

    CAS  Google Scholar 

  • Tai TH, Dahlbeck D, Clark ET, Gajiwala P, Pasion R, Whalen MC, Stall RE, Staskawicz BJ (1999) Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc Natl Acad Sci 96:14153–14158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takken FLW, Albrecht M, Tameling WI (2006) Resistance proteins: molecular switches of plant defence. Curr Opin Plant Biol 9:383–390

    CAS  PubMed  Google Scholar 

  • Ueno H, Matsumoto E, Aruga D, Kitagawa S, Matsumura H, Hayashida N (2012) Molecular characterization of the CRa gene conferring clubroot resistance in Brassica rapa. Plant Mol Biol 80:621–629

    CAS  PubMed  Google Scholar 

  • Wang Y, Tan J, Wu Z, VandenLangenberg K, Wehner TC, Wen C, Zheng X, Owens K, Thornton A, Bang HH, Hoeft E, Kraan PAG, Suelmann J, Pan J, Weng Y (2019) STAYGREEN, STAY HEALTHY: a loss-of-susceptibility mutation in the STAYGREEN gene provides durable, broad-spectrum disease resistances for over 50 years of US cucumber production. New Phytol 221:415–430

    CAS  PubMed  Google Scholar 

  • West JS, Kharbanda PD, Barbetti MJ, Fitt BDL (2001) Epidemiology and management of Leptosphaeria maculans (phoma stem canker) on oilseed rape in Australia, Canada and Europe. Plant Pathol 50:10–27

    Google Scholar 

  • Wu J, Cai G, Tu J, Li L, Liu S, Luo X, Zhou L, Fan C, Zhou Y (2013) Identification of QTLs for resistance to Sclerotinia stem rot and BnaC.IGMT5.a as a candidate gene of the major resistant QTL SRC6 in Brassica napus. PLoS ONE 8:e67740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y-F, Zhu T, Niu D-K (2013) Association of intron loss with high mutation rate in Arabidopsis: implications for genome size evolution. Genome Biol Evol 5:723–733

    PubMed  PubMed Central  Google Scholar 

  • Yu F, Lydiate DJ, Rimmer SR (2005) Identification of two novel genes for blackleg resistance in Brassica napus. Theor Appl Genet 110:969–979

    CAS  PubMed  Google Scholar 

  • Yu F, Lydiate DJ, Rimmer SR (2008) Identification and mapping of a third blackleg resistance locus in Brassica napus derived from B. rapa subsp. sylvestris. Genome 51:64–72

    CAS  PubMed  Google Scholar 

  • Yu F, Lydiate DJ, Gugel RK, Sharpe AG, Rimmer SR (2012) Introgression of Brassica rapa subsp. sylvestris blackleg resistance into B. napus. Mol Breed 30:1495–1506

    CAS  Google Scholar 

  • Yu F, Gugel RK, Kutcher HR, Peng G, Rimmer SR (2013) Identification and mapping of a novel blackleg resistance locus LepR4 in the progenies from Brassica napus × B. rapa subsp. sylvestris. Theor Appl Genet 126:307–315

    CAS  PubMed  Google Scholar 

  • Yu J, Tehrim S, Zhang F, Tong C, Huang J, Cheng X, Dong C, Zhou Y, Qin R, Hua W, Liu S (2014) Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana. BMC Genom 15:3

    Google Scholar 

  • Zhang X, Fernando WGD (2018) Insights into fighting against blackleg disease of Brassica napus in Canada. Crop Pasture Sci 69:40–47

    Google Scholar 

  • Zhang X, White RP, Demir E, Jedryczka M, Lange RM, Islam M, Li ZQ, Huang YJ, Hall AM, Zhou G, Wang Z, Cai X, Skelsey P, Fitt BDL (2014) Leptosphaeria spp., phoma stem canker and potential spread of L. maculans on oilseed rape crops in China. Plant Pathol 63:598–612

    Google Scholar 

  • Zhao J, Huang J, Chen F, Xu F, Ni X, Xu H, Wang Y, Jiang C, Wang H, Xu A, Huang R, Li D, Meng J (2012) Molecular mapping of Arabidopsis thaliana lipid-related orthologous genes in Brassica napus. Theor Appl Genet 124:407–421

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Nicholas J. Larkan and Hossein Borhan of Agriculture and Agri-Food Canada (AAFC), Saskatoon for providing the Leptosphaeria maculans isolates.

Funding

This study was supported by the Golden Seed Project (Grant No. 213007-05-4-CG100), Center for Horticultural Seed Development, Ministry of Agriculture, Food and Rural Affairs in the Republic of Korea (MAFRA). The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Author information

Authors and Affiliations

Authors

Contributions

I-SN, J-IP and H-TK conceptualized, acquired the fund and supervised the work; MJF, SN and MRH conducted the in silico analysis; MKB conducted the microsynteny analysis, MJF performed all wet lab experiments; HJJ and AHKR assisted in sample preparation, RNA extraction and qPCR, MJF and MRH analyzed the data, interpreted the results and wrote the manuscript. All authors read the article and approved the manuscript.

Corresponding author

Correspondence to Ill-Sup Nou.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Human/animal rights

This article does not contain any studies with human participants or animals by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2869 kb)

Supplementary file2 (XLSX 142 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferdous, M.J., Hossain, M.R., Park, JI. et al. In silico characterization and expression of disease-resistance-related genes within the collinear region of Brassica napus blackleg resistant locus LepR1′ in B. oleracea. J Gen Plant Pathol 86, 442–456 (2020). https://doi.org/10.1007/s10327-020-00946-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-020-00946-y

Keywords

Navigation