Skip to main content
Log in

0.4% Electrostrain at Low Field in Lead-Free Bi-Based Relaxor Piezoceramics by La Doping

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This work investigates the effects of lanthanum doping on the crystal structure, surface morphology, dielectric properties, ferroelectric properties, piezoelectric properties, and electromechanical strain properties of lead-free (Bi0.47Na0.47Ba0.06)1−xLaxTiO3 piezoelectric ceramics. All specimens were fabricated by a traditional solid-state reaction method. The results of crystal structure and dielectric properties categorize all specimens as relaxor materials. The results of dielectric properties and ferroelectric properties confirm the nonergodic-to-ergodic transformation as a function of La content. At the phase transition point, the material shows a high electric field-induced strain of 0.4% under an applied electric field of 5 kV/mm. The large electromechanical strain response at low applied field in the 0.02 mol La specimen may contribute to the two synergistic effects. First, the electric field induced the reversible ergodic-ferroelectric phase transition, which can generate the large strain. Second, the nonergodic and ergodic phases coexist at the phase transformation point, which can reduce the driving field by facilitating the growth of ferroelectric domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.E. Lines and A.M. Glass, Principles and Applications of Ferroelectric and Related Materials (New York: Oxford University Press Inc., 2001), p. 559.

    Google Scholar 

  2. E. Cross, Nature 432, 24 (2004).

    CAS  Google Scholar 

  3. K. Uchino, Ferroelectric Devices (New York: Marcel Decker, 2000), p. 145.

    Google Scholar 

  4. A.J. Bell and O. Deubzer, MRS Bull. 43, 581 (2018).

    CAS  Google Scholar 

  5. R. Wang, K. Wang, F. Yao, J.F. Li, F.H. Schader, K.G. Webber, W. Jo, and J. Rödel, J. Am. Ceram. Soc. 98, 2177 (2015).

    CAS  Google Scholar 

  6. M. Sutapun, R. Muanghlua, and N. Vittayakorn, Ferroelectrics 490, 1 (2016).

    CAS  Google Scholar 

  7. L. Yu, H. Xi, Z. Yu, Y. Liu, and Y. Lyu, Ceram. Int. 45, 14675 (2019).

    CAS  Google Scholar 

  8. C. Shi, J. Ma, J. Wu, K. Chen, and B. Wu, Ceram. Int. 46, 2798 (2020).

    CAS  Google Scholar 

  9. F. Hussain, A. Khesro, Z. Lu, G. Wang, and D. Wang, Front. Mater. (2020). https://doi.org/10.3389/fmats.2020.00087.

    Article  Google Scholar 

  10. Q. Yao, F. Wang, F. Xu, C.M. Leung, T. Wang, Y. Tang, X. Ye, Y. Xie, D. Sun, and W. Shi, Mater. Interfaces 7, 5066 (2015).

    CAS  Google Scholar 

  11. A. Ullah, M. Alam, A. Ullah, C.W. Ahn, J.S. Lee, S. Cho, and I.W. Kim, RSC Adv. 6, 63915 (2016).

    CAS  Google Scholar 

  12. J. Chen, Y. Wang, Y. Zhang, Y. Yang, and R. Jin, J. Eur. Ceram. Soc. 37, 2365 (2017).

    CAS  Google Scholar 

  13. D. Duraisamy and G.N. Venkatesan, Appl. Phys. Lett. 112, 052903 (2018).

    Google Scholar 

  14. K. Mclaughlin, C.P. Gonzalez, D. Wang, and A. Feteira, J. Alloys Compd. 779, 7 (2019).

    CAS  Google Scholar 

  15. M. Habib, M. Munir, S.A. Khan, T.W. Song, M.H. Kim, M.J. Iqbal, I. Qazi, and A. Hussain, J. Phys. Chem. Solids 138, 109230 (2020).

    CAS  Google Scholar 

  16. T.H. Dinh, H.S. Han, and J.S. Lee, Mater. Lett. 258, 126793 (2020).

    CAS  Google Scholar 

  17. D. Wang, Z. Jiang, B. Yang, S. Zhang, M. Zhang, F. Guo, and W. Cao, J. Mater. Sci. 49, 62 (2014).

    CAS  Google Scholar 

  18. A.K. Kalyani, H. Krishnan, A. Sen, A. Senyshyn, and R. Ranjan, Phys. Rev. B Condens. Matter 91, 024101 (2015).

    Google Scholar 

  19. C. Zhao, H. Wang, J. Xiong, and J. Wu, Dalton Trans. 45, 6466 (2016).

    CAS  Google Scholar 

  20. S. Murakami, N.T.A.F. Ahmed, D. Wang, A. Feteira, D.C. Sinclair, and I.M. Reaney, J. Eur. Ceram. Soc. 38, 4220 (2018).

    CAS  Google Scholar 

  21. S. Murakami, D. Wang, A. Mostaed, A. Khesro, A. Feteira, D.C. Sinclair, Z. Fan, X. Tan, and I.M. Reaney, J. Am. Ceram. Soc. 101, 5428 (2018).

    CAS  Google Scholar 

  22. T. Takenaka, K. Maruyama, and K. Sakata, Jpn. J. Appl. Phys. 30, 2236 (1991).

    CAS  Google Scholar 

  23. H.D. Li, C.D. Feng, and W.L. Yao, Mater. Lett. 58, 1194 (2004).

    CAS  Google Scholar 

  24. H. Sun, X. Wang, and X. Yao, Ceram. Int. 38S, S373 (2012).

    Google Scholar 

  25. J. Hao, W. Li, J. Zhai, and H. Chen, Mater. Sci. Eng. R 135, 1 (2019).

    Google Scholar 

  26. W. Jo, T. Granzow, E. Aulbach, J. Rödel, and D. Damjanovic, J. Appl. Phys. 105, 094102 (2009).

    Google Scholar 

  27. D.S. Lee, D.H. Lim, M.S. Kim, K.H. Kim, and S.J. Jeong, Appl. Phys. Lett. 99, 062906 (2011).

    Google Scholar 

  28. T.H. Dinh, J.K. Kang, J.S. Lee, N.H. Khansur, J. Daniels, H.Y. Lee, F.Z. Yao, K. Wang, J.F. Li, H.S. Han, and W. Jo, J. Eur. Ceram. Soc. 36, 3401 (2016).

    CAS  Google Scholar 

  29. D. Gobeljic, V.V. Shvartsman, A. Belianinov, B. Okatan, J. Baris, S. Jesse, S. Kalinin, C. Groh, J. Rödel, and D.C. Lupascu, Nanoscale 8, 2168 (2016).

    CAS  Google Scholar 

  30. M. Acosta, L.A. Schmitt, L.M. Luna, M.C. Scherrer, M. Brilz, K.G. Webber, M. Deluca, H.J. Kleebe, J. Rödel, and W. Donner, J. Am. Ceram. Soc. 98, 3405 (2015).

    CAS  Google Scholar 

  31. J. Koruza, V. Rojas, L. Molina-Luna, U. Kunz, M. Duerrschnabel, H.J. Kleebe, and M. Acosta, J. Eur. Ceram. Soc. 36, 1009 (2016).

    CAS  Google Scholar 

  32. M.I. Morozov and D. Damjanovic, J. Appl. Phys. 107, 034106 (2010).

    Google Scholar 

  33. F. Li, Y. Liu, Y. Lyu, Y. Qi, Z. Yu, and C. Lu, Ceram. Int. 43, 106 (2017).

    CAS  Google Scholar 

  34. X. Liu, C.L. Yuan, X.Y. Liu, F.H. Luo, Q. Feng, J. Xu, G.H. Chen, and C.R. Zhou, Mater. Chem. Phys. 181, 444 (2016).

    CAS  Google Scholar 

  35. X. Lu, J. Xu, L. Yang, C. Zhou, Y.Y. Zhao, C. Yuan, Q. Li, G. Chen, and H. Wang, J. Mater. 2, 87 (2016).

    Google Scholar 

  36. L. Li, M. Xu, Q. Zhang, P. Chen, N. Wang, D. Xiong, B. Peng, and L. Liu, Ceram. Int. 44, 343 (2018).

    CAS  Google Scholar 

  37. J. Cao, Y. Wang, and Z. Li, Ferroelectrics 520, 224 (2017).

    CAS  Google Scholar 

  38. Y. Mendez-Gonzalez, A. Peláiz-Barranco, J.D.S. Guerra, A. Pentón-Madrigal, and P. Saint-Grégoire, Mater. Chem. Phys. 208, 103 (2018).

    CAS  Google Scholar 

  39. B. Hu, Z. Pan, M. Dai, F.F. Guo, H. Ning, Z.B. Gu, J. Chen, M.H. Lu, S.T. Zhang, B. Yang, and W. Cao, J. Am. Ceram. Soc. 97, 3877 (2014).

    CAS  Google Scholar 

  40. R.D. Shannon, Acta Cryst. A32, 751 (1976).

    CAS  Google Scholar 

  41. X. Jia, J. Zhang, Y. Gao, J. Wang, and P. Zheng, Mater. Res. Bull. 89, 11 (2017).

    CAS  Google Scholar 

  42. X. Jia, J. Zhang, L. Wang, J. Wang, H. Du, Y. Yao, L. Ren, F. Wen, and P. Zheng, J. Am. Ceram. Soc. 102, 5203 (2019).

    CAS  Google Scholar 

  43. R. Zuo, C. Ye, Z. Fang, and J. Li, J. Eur. Ceram. Soc. 28, 871 (2008).

    CAS  Google Scholar 

  44. W.S. Kang and J.H. Koh, J. Eur. Ceram. Soc. 35, 2057 (2015).

    CAS  Google Scholar 

  45. Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, H.H. Hong, T.G. Park, D. Do, and S.S. Kim, Appl. Phys. Lett. 96, 022901 (2010).

    Google Scholar 

  46. L.E. Cross, Ferroelectrics 151, 305 (1994).

    CAS  Google Scholar 

  47. C. Ma, X. Tan, D. Dul’kin, and M. Roth, J. Appl. Phys. 108, 104105 (2010).

    Google Scholar 

  48. G.A. Samara, J. Phys. Condens. Matter 15, R367 (2003).

    CAS  Google Scholar 

  49. K. Wang, A. Hussain, W. Jo, and J. Rödel, J. Am. Ceram. Soc. 95, 2241 (2012).

    CAS  Google Scholar 

  50. H.S. Han, W. Jo, J. Rödel, I.K. Hong, W.P. Tai, and J.S. Lee, J. Phys. Condens. Matter 24, 365901 (2012).

    Google Scholar 

  51. R. Ahluwalia, T. Lookman, A. Saxena, and W. Cao, Phys. Rev. B Condens. Matter 72, 014112 (2005).

    Google Scholar 

  52. R. Theissmann, L.A. Schmitt, J. Kling, R. Schierholz, and K.A. Schonau, J. Appl. Phys. 102, 024111 (2007).

    Google Scholar 

  53. L.F. Wang and J.M. Liu, Appl. Phys. Lett. 91, 092908 (2007).

    Google Scholar 

  54. T. Sluka, A.K. Tagantsev, D. Damjanovic, M. Gureev, and N. Setter, Nat. Commun. 3, 748 (2012).

    Google Scholar 

  55. C.C. Jin, F.F. Wang, L.L. Wei, J. Tang, Y. Li, Q.R. Yao, C.Y. Tian, and W.Z. Shi, J. Alloys Compd. 585, 185 (2014).

    CAS  Google Scholar 

  56. J. Hao, Z. Xu, R. Chu, W. Li, J. Du, and G. Li, J. Phys. D Appl. Phys. 48, 472001 (2015).

    Google Scholar 

  57. W. Bai, P. Li, L. Li, J. Zhang, B. Shen, and J. Zhai, J. Alloys Compd. 649, 772 (2015).

    CAS  Google Scholar 

  58. L. Li, J. Hao, Z. Xu, W. Li, R. Chu, and G. Li, Ceram. Int. 42, 14886 (2016).

    CAS  Google Scholar 

  59. W. Bai, D. Chen, Y. Huang, B. Chen, J. Zhai, and Z. Ji, J. Alloys Compd. 667, 6 (2016).

    CAS  Google Scholar 

  60. W. Bai, D. Chen, P. Zheng, B. Chen, J. Zhai, and Z. Ji, Dalton Trans. 45, 8573 (2016).

    CAS  Google Scholar 

  61. J. Hao, Z. Xu, R. Chu, W. Li, P. Fu, J. Du, and G. Li, J. Eur. Ceram. Soc. 36, 4003 (2016).

    CAS  Google Scholar 

  62. U. Obilor, C. Pascual-Gonzalez, S. Murakami, I.M. Reaney, and A. Feteira, Mater. Res. Bull. 97, 385 (2018).

    CAS  Google Scholar 

  63. N.U. Khan, A. Ullah, A. Ullah, M.Y. Khan, T.H. Kim, I.W. Kim, and C.W. Ahn, Sens. Actuators A 291, 156 (2019).

    Google Scholar 

  64. R. Dittmer, W. Jo, J. Rödel, S. Kalinin, and N. Balke, Adv. Funct. Mater. 22, 4208 (2012).

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a National Research Foundation (NRF) Grant (2016R1D1A3B01008169).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi Hinh Dinh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinh, T.H., Han, HS., Tran, V.D.N. et al. 0.4% Electrostrain at Low Field in Lead-Free Bi-Based Relaxor Piezoceramics by La Doping. J. Electron. Mater. 49, 6080–6086 (2020). https://doi.org/10.1007/s11664-020-08348-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08348-8

Keywords

Navigation