Skip to main content
Log in

Formation of a Diffusion Barrier-Like Intermetallic Compound to Suppress the Formation of Micro-voids at the Sn-0.7Cu/Cu Interface by Optimal Ga Additions

  • Interfacial Stability in Multi-component Systems
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Kirkendall micro-voids observed within ϵ-Cu3Sn or at the bulk Sn solder/Cu interface are undesirable imperfections in solder joints in electronic interconnections that significantly decrease the reliability of the joint. Recent studies have shown that micro-alloying could alter these interfacial reactions and improve the mechanical properties. In this study, we investigated the Cu-Ga-Sn phase equilibria at 200°C and the interfacial reactions between Cu substrate and Ga-doped Sn-0.7Cu solders with doping levels of 1.0, 2.0, and 3.0 wt.%. The assembled diffusion couples were isothermally annealed at 200°C for different time periods. The results showed that the thickness of the typical Cu-Sn IMCs (η-Cu6Sn5 and ϵ-Cu3Sn) progressively decreased along with the formation of the γ-Cu9Ga4 phase as the Ga-doping concentration was increased. The η-Cu6Sn5 and ϵ-Cu3Sn were completely suppressed and substituted by the γ-Cu9Ga4 phase when the Ga-doping concentration was 3 wt.%. More interestingly, the γ-Cu9Ga4 was the only IMC formed at the Sn-0.7Cu-3.0 Ga/Cu interface even when aging at 200°C for up to 1000 h, implying that the undesired defectiveness of Kirkendall micro-voids is possibly prevented by controlling the formation of the interfacial phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.K. Lin, T.Y. Chung, S.W. Chen, and C.H. Chang, J. Mater. Res. 24, 2628 (2009).

    Article  Google Scholar 

  2. C. E. Ho, S. C. Yang, and C. R. Kao, Lead-Free Electronic Solders. Springer, Boston, MA, 155 (2006).

  3. S.K. Lin, C.F. Yang, S.H. Wu, and S.W. Chen, J. Electron. Mater. 37, 498 (2008).

    Article  Google Scholar 

  4. S.W. Chen, C.H. Wang, S.K. Lin, and C.N. Chiu, J. Mater. Sci.: Mater. Electron. 18, 19 (2007).

    Google Scholar 

  5. S.W. Chen, C.H. Wang, S.K. Lin, C.N. Chiu, and C.C. Chen, JOM 59, 39 (2007).

    Article  Google Scholar 

  6. W. Gierlotka, S.W. Chen, and S.K. Lin, J. Mater. Res. 22, 3158 (2007).

    Article  Google Scholar 

  7. N. Dariavach, P. Callahan, J. Liang, and R. Fournelle, J. Electron. Mater. 35, 1581 (2006).

    Article  Google Scholar 

  8. J.W. Yoon, S.W. Kim, and S.B. Jung, J. Alloys Compd. 385, 192 (2004).

    Article  Google Scholar 

  9. K.S. Bae and S.J. Kim, J. Mater. Res. 17, 743 (2002).

    Article  Google Scholar 

  10. T.Y. Lee, W.J. Choi, K.N. Tu, J.W. Jang, S.M. Kuo, J.K. Lin, D.R. Frear, K. Zeng, and J.K. Kivilahti, J. Mater. Res. 17, 291 (2002).

    Article  Google Scholar 

  11. S.M. Hayes, N. Chawl, and D.R. Frear, Microelectron. Reliab. 49, 269 (2009).

    Article  Google Scholar 

  12. J.W. Yoon, S.W. Kim, J.M. Koo, D.G. Kim, and S.B. Jung, J. Electron. Mater. 33, 1190 (2004).

    Article  Google Scholar 

  13. D.R. Frear, J.W. Jang, J.K. Lin, and C. Zhang, JOM 53, 28 (2001).

    Article  Google Scholar 

  14. K. Zeng and K.N. Tu, Mater. Sci. Eng. R: Rep. 38, 55 (2002).

    Article  Google Scholar 

  15. S.K. Lin, C.L. Cho, and H.-M. Chang, J. Electron. Mater. 43, 204 (2014).

    Article  Google Scholar 

  16. S.K. Lin, M.J. Wang, C.Y. Yeh, H.M. Chang, and Y.C. Liu, J. Alloys Compd. 702, 561 (2017).

    Article  Google Scholar 

  17. S.K. Lin, C.Y. Yeh, and M.J. Wang, Mater. Charact. 137, 14 (2018).

    Article  Google Scholar 

  18. S. Kumar, C.A. Handwerker, and M.A. Dayananda, J. Phase Equilib. Diffus. 32, 309 (2011).

    Article  Google Scholar 

  19. L. Yin and P. Borgesen, J. Mater. Res. 26, 455 (2011).

    Article  Google Scholar 

  20. T. Laurila, V. Vuorinen, and M. Paulasto-Kröckel, Mater. Sci. Eng. : R: Rep. 68, 1 (2010).

    Article  Google Scholar 

  21. Y.W. Wang, Y.W. Lin, C.T. Tu, and C.R. Kao, J. Alloys Compd. 478, 121 (2009).

    Article  Google Scholar 

  22. Y.W. Wang, T.L. Yang, J.Y. Wu, and C.R. Kao, J. Alloys Compd. 750, 570 (2018).

    Article  Google Scholar 

  23. C.H. Wang and K.T. Li, J. Electron. Mater. 45, 6200 (2016).

    Article  Google Scholar 

  24. C.H. Wang, K.T. Li, and C.Y. Lin, Intermetallics 67, 102 (2015).

    Article  Google Scholar 

  25. H.M. Chen, C.J. Guo, J.P. Huang, and H. Wang, J. Mater. Sci.: Mater. Electron. 26, 5459 (2015).

    Google Scholar 

  26. H.W. Wang, J.S. Fang, Z.Q. Xu, and X.P. Zhang, J. Mater. Sci.: Mater. Electron. 26, 3589 (2015).

    Google Scholar 

  27. Q.K. Zhang, W.M. Long, X.Q. Yu, Y.Y. Pei, and P.X. Qiao, J. Alloys Compd. 622, 973 (2015).

    Article  Google Scholar 

  28. D.X. Luo, S.B. Xue, and S. Liu, J. Mater. Sci.: Mater. Electron. 25, 5195 (2014).

    Google Scholar 

  29. D.X. Luo, S.B. Xue, and Z.Q. Li, J. Mater. Sci.: Mater. Electron. 25, 3566 (2014).

    Google Scholar 

  30. S.K. Lin, T.L. Nguyen, S.C. Wu, and Y.H. Wang, J. Alloys Compd. 586, 319 (2014).

    Article  Google Scholar 

  31. M. Matsushita, Y. Sasaki, and Y. Ikuta, Defect Diffus. Forum 312–315, 518 (2011).

    Article  Google Scholar 

  32. G. Melcioiu, V.A. Şerban, M. Ashworth, C. Codrean, M. Liţă, and G.D. Wilcox, Solid State Phenom. 216, 91 (2014).

    Article  Google Scholar 

  33. W. Cao, S.L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer, and W.A. Oates, Calphad 33, 328 (2009).

    Article  Google Scholar 

  34. J.B. Li, L.N. Ji, J.K. Liang, Y. Zhang, J. Luo, C.R. Li, and G.H. Rao, Calphad 32, 447 (2008).

    Article  Google Scholar 

  35. M. Li, Z. Du, C. Guo, C. Li, J. Alloys Compd. 477(1–), 104 (2009).

  36. T.J. Anderson and I. Ansara, J. Phase Equilib. 13, 181 (1992).

    Article  Google Scholar 

  37. K.N. Tu, Acta Metall. 21, 347 (1973).

    Article  Google Scholar 

  38. K.N. Tu and R.D. Thompson, Acta Metall. 30, 947 (1982).

    Article  Google Scholar 

  39. K.N. Tu, Mater. Chem. Phys. 46, 217 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial sponsorship provided by the Ministry of Science and Technology (MOST) in Taiwan (109-2636-E-006-012). This work was also partially supported by the Hierarchical Green-Energy Materials (Hi-GEM) Research Center, from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) and the Ministry of Science and Technology (108-3017-F-006 -003) in Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-kang Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, TL., Liu, Yc., Yang, Ch. et al. Formation of a Diffusion Barrier-Like Intermetallic Compound to Suppress the Formation of Micro-voids at the Sn-0.7Cu/Cu Interface by Optimal Ga Additions. JOM 72, 3538–3546 (2020). https://doi.org/10.1007/s11837-020-04302-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04302-5

Navigation