Skip to main content
Log in

Microstructural Analysis and Optical Properties of Lead Zirconate Nanoparticles

  • Recent Advances in Functional Materials and 2D/3D Processing for Sensors and Electronic Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Lead zirconate (PZ) nanopowders were synthesized by the treatment of precursors with high-energy ball milling for a relatively short time. The effects of ball milling time and rotational speed on the produced nanomaterial were investigated. The calcination temperature of the ball-milled powder was determined from the thermogravimetric analysis (TGA) and the differential scanning calorimetry (DSC) results. The structural properties of the calcined nanoparticles were studied by Fourier transmission infrared (FT-IR), x-ray diffraction (XRD), and transmission electron microscope (TEM). Well-crystallized PZ nanopowders were obtained after heating at 800°C for 3 h. The diffraction data were refined by the Rietveld method to accurately determine the crystallographic information. Williamson-Hall, Halder-Wagner, and size-strain plot methods were employed to investigate the average crystallite size and lattice microstrain in the prepared samples. The XRD and TEM images confirmed the formation of nanoparticles with an average size in the range of 20–43 nm. The band gap of the nanopowders varied from 3.11 eV to 3.28 eV as established by diffuse reflectance measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Zhai, X. Li, Y. Yao, and H. Chen, Mater. Sci. Eng. B 99, 230 (2003).

    Google Scholar 

  2. N.H. Fletcher, A.D. Hilton, and B.W. Ricketts, J. Phys. D Appl. Phys. 29, 253 (1996).

    Google Scholar 

  3. I. Burn and D.M. Smyth, J. Mater. Sci. 7, 339 (1972).

    Google Scholar 

  4. U. Sukkha, R. Muanghlua, S. Niemcharoen, B. Boonchom, and N. Vittayakorn, J. Am. Ceram. Soc. 94, 3397 (2011).

    Google Scholar 

  5. M. M. Calzada, in edited by L. Pardo and J. Ricote (Springer Netherlands, Dordrecht, 2011), pp. 93–144.

  6. M.P. Moret, M.A.C. Devillers, K. Wörhoff, and P.K. Larsen, J. Appl. Phys. 92, 468 (2002).

    Google Scholar 

  7. W. Wang, X. Chen, Q. Sun, T. Xin, and M. Ye, J. Alloys Compd. 830, 154581 (2020).

    Google Scholar 

  8. S. Li, R.A. Condrate, S.D. Jang, and R.M. Spriggs, J. Mater. Sci. 24, 3873 (1989).

    Google Scholar 

  9. O. Khamman, W. Chaisan, R. Yimnirun, and S. Ananta, Mater. Lett. 61, 2822 (2007).

    Google Scholar 

  10. S. Begin-Colin, G. Le Caër, M. Zandona, E. Bouzy, and B. Malaman, J. Alloys Compd. 227, 157 (1995).

    Google Scholar 

  11. I.J. Lin and S. Nadiv, Mater. Sci. Eng. 39, 193 (1979).

    Google Scholar 

  12. I.J. Lin, Miner. Sci. Eng. 7, 313 (1975).

    Google Scholar 

  13. B. E. Warren, X-Ray Diffraction (Courier Corporation, 1990).

  14. C. Puchmark, S. Jiansirisomboon, G. Rujijanagul, and T. Tunkasiri, Curr. Appl. Phys. 4, 179 (2004).

    Google Scholar 

  15. K.H. Omran, M.S.A. El-sadek, M. Mostafa, and O.M. Hemeda, Appl. Nanosci. 10, 2315 (2020).

    Google Scholar 

  16. P. Scardi and M. Leoni, Acta Crystallogr. Sect. A Found. Crystallogr. 57, 604 (2001).

    Google Scholar 

  17. A. Le Bail, H. Duroy, and J.L. Fourquet, Mater. Res. Bull. 23, 447 (1988).

    Google Scholar 

  18. J. Rodríguez-Carvajal, CEA/Saclay, Fr. (2001).

  19. G.S. Pawley, J. Appl. Crystallogr. 14, 357 (1981).

    Google Scholar 

  20. S. Teslic and T. Egami, Acta Crystallogr. Sect. B Struct. Sci. 54, 750 (1998).

    Google Scholar 

  21. L.B. Kong, J. Ma, W. Zhu, and O.K. Tan, Mater. Lett. 49, 96 (2001).

    Google Scholar 

  22. N. Sahu and S. Panigrahi, Ceram. Int. 38, 1085 (2011).

    Google Scholar 

  23. A. Taylor (1961).

  24. M.S. Abd El-Sadek, H.S. Wasly, and K.M. Batoo, Appl. Phys. A 125, 283 (2019).

    Google Scholar 

  25. G.K. Williamson and W.H. Hall, Acta Metall. 1, 22 (1953).

    Google Scholar 

  26. H.P. Klug and L.E. Alexander, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials (1974).

  27. S. Murugesan, R. Thirumurugesan, E. Mohandas, and P. Parameswaran, Mater. Chem. Phys. 225, 320 (2019).

    Google Scholar 

  28. F. Izumi and T. Ikeda, Implementation of the Williamson-Hall and Halder-Wagner Methods into RIETAN-FP (2014).

  29. N.C. Halder and C.N.J. Wagner, Acta Crystallogr. 20, 312 (1966).

    Google Scholar 

  30. K. Venkateswarlu, A. Chandra Bose, and N. Rameshbabu, Phys. B Condens. Matter 405, 4256 (2010).

    Google Scholar 

  31. P. Muhammed Shafi and A. Chandra Bose, AIP Adv. 5, 057137 (2015).

    Google Scholar 

  32. M.A. Tagliente and M. Massaro, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 266, 1055 (2008).

    Google Scholar 

  33. D. Nath, F. Singh, and R. Das, Mater. Chem. Phys. 239, 122021 (2020).

    Google Scholar 

  34. H. Irfan, K. Mohamed Racik, and S. Anand, J. Asian Ceram. Soc. 6, 54 (2018).

    Google Scholar 

  35. V. Soleimanian and M. Mojtahedi, Appl. Phys. A Mater. Sci. Process. 119, 977 (2015).

    Google Scholar 

  36. V. Uvarov and I. Popov, Mater. Charact. 58, 883 (2007).

    Google Scholar 

  37. A. Weibel, R. Bouchet, F. Boulc, and P. Knauth, Chem. Mater. 17, 2378 (2005).

    Google Scholar 

  38. A. Pragatheeswaran, R. Ravi, and S.R. Bakshi, Adv. Powder Technol. 30, 2759 (2019).

    Google Scholar 

  39. H. Dutta, P. Sahu, S.K. Pradhan, and M. De, Mater. Chem. Phys. 77, 153 (2003).

    Google Scholar 

  40. H. Fujishita, Y. Ishikawa, S. Tanaka, A. Ogawaguchi, and S. Katano, J. Phys. Soc. Jpn. 72, 1426 (2003).

    Google Scholar 

  41. F. Jona, G. Shirane, F. Mazzi, and R. Pepinsky, Phys. Rev. 105, 849 (1957).

    Google Scholar 

  42. S. Piskunov, A. Gopeyenko, E.A. Kotomin, Y.F. Zhukovskii, and D.E. Ellis, Comput. Mater. Sci. 41, 195 (2007).

    Google Scholar 

  43. S. Verma, S. Rani, S. Kumar, and M.A.M. Khan, Ceram. Int. 44, 1653 (2018).

    Google Scholar 

  44. R.M. Silverstein and G.C. Bassler, J. Chem. Educ. 39, 546 (1962).

    Google Scholar 

  45. J.M. Hollas, Modern Spectroscopy (Wiley, 2004).

  46. D. Sun, X. Jin, H. Liu, J. Zhu, Y. Zhu, and Y. Zhu, Ferroelectrics 355, 145 (2007).

    Google Scholar 

  47. A. Tawfik, O.M. Hemeda, A.M.A. Henaish, and A.M. Dorgham, Mater. Chem. Phys. 211, 1 (2018).

    Google Scholar 

  48. P. Kubelka, JOSA 38, 448 (1948).

    MathSciNet  Google Scholar 

  49. G.F. Teixeira, M.A. Zaghete, G. Gasparotto, M.G.S. Costa, J.W.M. Espinosa, E. Longo, and J.A. Varela, J. Alloys Compd. 512, 124 (2012).

    Google Scholar 

  50. K. Suzuki, M. Terauchi, Y. Uemichi, and K. Kijima, Jpn. J. Appl. Phys. 44, 7593 (2005).

    Google Scholar 

  51. P. Bharathi, P. Thomas, and K.B.R. Varma, J. Mater. Chem. C 3, 4762 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. H. Omran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1898 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omran, K.H., Abd El-sadek, M.S., Mostafa, M. et al. Microstructural Analysis and Optical Properties of Lead Zirconate Nanoparticles. JOM 73, 630–639 (2021). https://doi.org/10.1007/s11837-020-04296-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04296-0

Navigation