Skip to main content
Log in

Kepler Problem in Space with Deformed Lorentz-Covariant Poisson Brackets

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We propose a Lorentz-covariant deformed algebra describing a (3 + 1)-dimensional quantized spacetime, which in the nonrelativistic limit leads to undeformed one. The deformed Poincaré transformations leaving the algebra invariant are identified. In the classical limit the Lorentz-covariant deformed algebra yields the deformed Lorentz-covariant Poisson brackets. Kepler problem with the deformed Lorentz-covariant Poisson brackets is studied. We obtain that the precession angle of an orbit of the relativistic particle in the gravitational field depends on the mass of the particle, i.e. equivalence principle is violated. We propose a condition for the recovery of the equivalence principle in the space with the deformed Poisson brackets. Comparing our analytical result with the experimental data for the precession angle of Mercury’s orbit we provide an estimation of minimal length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Snyder, H.S.: Quantized space–time. Phys. Rev. 71, 38–41 (1947)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Gross, D.J., Mende, P.F.: String theory beyond the Planck scale. Nucl. Phys. B 303, 407–454 (1988)

    ADS  MathSciNet  Google Scholar 

  3. Maggiore, M.: A generalized uncertainty principle in quantum gravity. Phys. Lett. B 304, 65–69 (1993)

    ADS  Google Scholar 

  4. Witten, E.: Reflections on the fate of spacetime. Phys. Today 49, 24–31 (1996)

    MathSciNet  Google Scholar 

  5. Kempf, A.: Uncertainty relation in quantum mechanics with quantum group symmetry. J. Math. Phys. 35, 4483–4496 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Kempf, A., Mangano, G., Mann, R.B.: Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 52, 1108–1118 (1995)

    ADS  MathSciNet  Google Scholar 

  7. Hinrichsen, H., Kempf, A.: Maximal localization in the presence of minimal uncertainties in positions and in momenta. J. Math. Phys. 37, 2121–2137 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Kempf, A.: Non-pointlike particles in harmonic oscillators. J. Phys. A 30, 2093–2102 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Quesne, C., Tkachuk, V.M.: Lorentz-covariant deformed algebra with minimal length and application to the (1 + 1)-dimensional Dirac oscillator. J. Phys. A 39, 10909–10922 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Quesne, C., Tkachuk, V.M.: Harmonic oscillator with nonzero minimal uncertainties in both position and momentum in a SUSYQM framework. J. Phys. A 36, 10373–10389 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Quesne, C., Tkachuk, V.M.: More on a SUSYQM approach to the harmonic oscillator with nonzero minimal uncertainties in position and/or momentum. J. Phys. A 37, 10095–10113 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Chang, L.N., Minic, D., Okamura, N., Takeuchi, T.: Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations. Phys. Rev. D 65, 125027 (2002)

    ADS  MathSciNet  Google Scholar 

  13. Dadić, I., Jonke, L., Meljanac, S.: Harmonic oscillator with minimal length uncertainty relations and ladder operators. Phys. Rev. D 67, 087701 (2003)

    ADS  Google Scholar 

  14. Brau, F.: Minimal length uncertainty relation and the hydrogen atom. J. Phys. A 32, 7691–7696 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Benczik, S., Chang, L.N., Minic, D., Takeuchi, T.: Hydrogen-atom spectrum under a minimal-length hypothesis. Phys. Rev. A 72, 012104 (2005)

    ADS  Google Scholar 

  16. Stetsko, M.M., Tkachuk, V.M.: Perturbation hydrogen-atom spectrum in deformed space with minimal length. Phys. Rev. A 74, 012101 (2006)

    ADS  Google Scholar 

  17. Stetsko, M.M.: Corrections to the ns levels of the hydrogen atom in deformed space with minimal length. Phys. Rev. A 74, 062105 (2006). [Erratum: Phys. Rev. A 78, 029907(E) (2008)]

    ADS  Google Scholar 

  18. Stetsko, M.M., Tkachuk, V.M.: Orbital magnetic moment of the electron in the hydrogen atom in a deformed space with minimal length. Phys. Lett. A 372, 5126–5130 (2008)

    ADS  MATH  Google Scholar 

  19. Brau, F., Buisseret, F.: Minimal length uncertainty relation and gravitational quantum well. Phys. Rev. D 74, 036002 (2006)

    ADS  Google Scholar 

  20. Nozari, K., Pedram, P.: Minimal length and bouncing-particle spectrum. Europhys. Lett. 92, 50013 (2010)

    ADS  Google Scholar 

  21. Pedram, P., Nozari, K., Taheri, S.H.: The effects of minimal length and maximal momentum on the transition rate of ultra cold neutrons in gravitational field. J. High Energy Phys. 1103, 093 (2011)

    ADS  MATH  Google Scholar 

  22. Samar, M.I., Tkachuk, V.M.: Exactly solvable problems in the momentum space with a minimum uncertainty in position. J. Math. Phys. 57, 042102 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Ferkous, N.: Regularization of the Dirac \(\delta\) potential with minimal length. Phys. Rev. A 88, 064101 (2013)

    ADS  Google Scholar 

  24. Samar, M.I., Tkachuk, V.M.: J. Math. Phys. 57, 082108 (2016)

    ADS  MathSciNet  Google Scholar 

  25. Fityo, T.V., Vakarchuk, I.O., Tkachuk, V.M.: One-dimensional Coulomb-like problem in deformed space with minimal length. J. Phys. A 39, 2143–2149 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Bouaziz, D., Bawin, M.: Regularization of the singular inverse square potential in quantum mechanics with a minimal length. Phys. Rev. A 76, 032112 (2007)

    ADS  Google Scholar 

  27. Bouaziz, D., Bawin, M.: Singular inverse square potential in arbitrary dimensions with a minimal length: application to the motion of a dipole in a cosmic string background. Phys. Rev. A 78, 032110 (2008)

    ADS  Google Scholar 

  28. Bouaziz, D., Birkandan, T.: Singular inverse square potential in coordinate space with a minimal length. Ann. Phys. 387, 62–74 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Frassino, A.M., Panella, O.: Casimir effect in minimal length theories based on a generalized uncertainty principle. Phys. Rev. D 85, 045030 (2012)

    ADS  Google Scholar 

  30. Stetsko, M.M., Tkachuk, V.M.: Scattering problem in deformed space with minimal length. Phys. Rev. A 76, 012707 (2007)

    ADS  Google Scholar 

  31. Das, S., Vagenas, E.C.: Universality of quantum gravity corrections. Phys. Rev. Lett. 101, 221301 (2008)

    ADS  Google Scholar 

  32. Ali, A.F., Das, S., Vagenas, E.C.: Proposal for testing quantum gravity in the lab. Phys. Rev. D 84, 044013 (2011)

    ADS  Google Scholar 

  33. Vakili, B.: Dilaton cosmology, noncommutativity, and generalized uncertainty principle. Phys. Rev. D 77, 044023 (2008)

    ADS  MathSciNet  Google Scholar 

  34. Quesne, C., Tkachuk, V.M.: Dirac oscillator with nonzero minimal uncertainty in position. J. Phys. A 38, 1747–1765 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Menculini, L., Panella, O., Roy, P.: Exact solutions of the (2+1) dimensional Dirac equation in a constant magnetic field in the presence of a minimal length. Phys. Rev. D 87, 065017 (2013)

    ADS  Google Scholar 

  36. Pedram, P., Amirfakhrian, M., Shababi, H.: On the (2 + 1)-dimensional Dirac equation in a constant magnetic field with a minimal length uncertainty. Int. J. Mod. Phys. D 24, 1550016 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Samar, M.I., Tkachuk, V.M.: Perturbation hydrogen-atom spectrum in a space with the Lorentz-covariant deformed algebra with minimal length. J. Phys. Stud. 14, 1001 (2010)

    Google Scholar 

  38. Samar, M.I.: Modified perturbation theory for hydrogen atom in space with Lorentz-covariant deformed algebra with minimal length. J. Phys. Stud. 15, 1007 (2011)

    Google Scholar 

  39. Francisco, R.O., Antonacci Oakes, T.L., Fabris, J.C., Nogueira, J.A.: Relativistic approach to the hydrogen atom in a minimal length scenario. Braz. J. Phys. 44, 271–277 (2014)

    ADS  Google Scholar 

  40. Falek, M., Merad, M., Moumni, M.: Klein paradox for the bosonic equation in the presence of minimal length. Found. Phys. 45, 507–524 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Battisti, M.V., Meljanac, S.: Modification of Heisenberg uncertainty relations in noncommutative Snyder space-time geometry. Phys. Rev. D 79, 067505 (2009)

    ADS  MathSciNet  Google Scholar 

  42. Hossenfelder, S.: Minimal length scale scenarios for quantum gravity. Living. Rev. Relativ. 16(2), 1–90 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Kober, M.: Gauge theories under incorporation of a generalized uncertainty principle. Phys. Rev. D 82, 085017 (2010)

    ADS  Google Scholar 

  44. Benczik, S., Chang, L.N., Minic, D., Okamura, N., Rayyan, S., Takeuchi, T.: Short distance versus long distance physics: the classical limit of the minimal length uncertainty relation. Phys. Rev. D 66, 026003 (2002)

    ADS  Google Scholar 

  45. Silagadze, Z.K.: Quantum gravity, minimum length and Keplerian orbits. Phys. Lett. A 373, 2643–2645 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Leiva, C., Saavedra, J., Villanueva, J.R.: The Kepler problem in the Snyder space. Pramana 80(6), 945–951 (2013)

    ADS  Google Scholar 

  47. Tkachuk, V.M.: Galilean and Lorentz transformations in a space with generalized uncertainty principle. Found. Phys. 46, 1666–1679 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  48. Frydryszak, A.M., Tkachuk, V.M.: Aspects of pre-quantum description of deformed theories. Czechoslov. J. Phys. 53, 1035–1040 (2003)

    ADS  MathSciNet  Google Scholar 

  49. Buisseret, F.: Quantum N-body problem with a minimal length. Phys. Rev. A 82, 062102 (2010)

    ADS  Google Scholar 

  50. Quesne, C., Tkachuk, V.M.: Composite system in deformed space with minimal length. Phys. Rev. A 81, 012106 (2010)

    ADS  Google Scholar 

  51. Tkachuk, V.M.: Deformed Heisenberg algebra with minimal length and the equivalence principle. Phys. Rev. A 86, 062112 (2012)

    ADS  Google Scholar 

  52. Pramanik, S., Ghosh, S., Pal, P.: Conformal Invariance in noncommutative geometry and mutually interacting Snyder Particles. Phys. Rev. D 90, 105027 (2014)

    ADS  Google Scholar 

  53. Ghosh, S.: Quantum gravity effects in geodesic motion and predictions of equivalence principle violation. Class. Quantum Grav. 31, 025025 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  54. Touboul, P., et al.: MICROSCOPE mission: first results of a space test of the equivalence principle. Phys. Rev. Lett. 119, 231101 (2017)

    ADS  Google Scholar 

  55. Marin, F., et al.: Gravitational bar detectors set limits to Planck-scale physics on macroscopic variables. Nat. Phys. 9, 71–73 (2013)

    Google Scholar 

  56. Meljanac, S., Meljanac, D., Mercati, F., Pikutić, D.: Noncommutative spaces and Poincaré symmetry. Phys. Lett. B 766, 181 (2017)

    ADS  MATH  Google Scholar 

  57. Banerjee, R., Kulkarni, Sh, Samanta, S.: Deformed symmetry in Snyder space and relativistic particle dynamics. JHEP 0605, 077 (2006)

    ADS  Google Scholar 

  58. Girelli, F., Konopka, T., Kowalski-Glikman, J., Livine, E.R.: Free particle in deformed special relativity. Phys. Rev. D 73, 045009 (2006)

    ADS  MathSciNet  Google Scholar 

  59. Dirac, P.A.M.: Lectures on Quantum Mechanics. Dover, New York (2001)

    Google Scholar 

  60. Park, R.S., Folkner, W.M., Konopliv, A.S., Williams, J.G., Smith, D.E., Zuber, M.: Precession of Mercury’s perihelion from ranging to the MESSENGER spacecraft. Astron. J. 153(3), 121 (2017)

    ADS  Google Scholar 

  61. Gnatenko, Kh.P.: Composite system in noncommutative space and the equivalence principle. Phys. Lett. A 377, 3061–3066 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  62. Gnatenko, Kh.P., Tkachuk, V.M.: Weak equivalence principle in noncommutative phase space and the parameters of noncommutativity. Phys. Lett. A 381, 2463–2469 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  63. Tkachuk, V.M.: Field equation in a deformed space with minimal length. J. Phys. Stud. 11(1), 41–44 (2007)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the European Commission under the project STREVCOMS PIRSES-2013-612669 and by the projects FF-63Hp (Grant No. 0117U007190) and FF-30F (Grant No. 0116U001539) from the Ministry of Education and Science of Ukraine. The authors thank Dr. A. A. Rovenchak for a careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Samar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samar, M.I., Tkachuk, V.M. Kepler Problem in Space with Deformed Lorentz-Covariant Poisson Brackets. Found Phys 50, 942–959 (2020). https://doi.org/10.1007/s10701-020-00359-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-020-00359-z

Keywords

Navigation