Skip to main content
Log in

Convergence of Finite Volume Schemes for the Euler Equations via Dissipative Measure-Valued Solutions

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

The Cauchy problem for the complete Euler system is in general ill-posed in the class of admissible (entropy producing) weak solutions. This suggests that there might be sequences of approximate solutions that develop fine-scale oscillations. Accordingly, the concept of measure-valued solution that captures possible oscillations is more suitable for analysis. We study the convergence of a class of entropy stable finite volume schemes for the barotropic and complete compressible Euler equations in the multidimensional case. We establish suitable stability and consistency estimates and show that the Young measure generated by numerical solutions represents a dissipative measure-valued solution of the Euler system. Here dissipative means that a suitable form of the second law of thermodynamics is incorporated in the definition of the measure-valued solutions. In particular, using the recently established weak-strong uniqueness principle, we show that the numerical solutions converge pointwise to the regular solution of the limit systems at least on the lifespan of the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Audussse, F. Bouchut, M.-O. Bristeau, and J. Sainte-Marie. Kinetic entropy inequality and hydrostatic reconstruction scheme for the Saint-Venant system. Math. Comp.85 (2016), 2815–2837.

    MathSciNet  MATH  Google Scholar 

  2. J. J. Alibert, and G. Bouchitté. Non-uniform integrability and generalized Young measures. J. Convex Anal.4(1) (1997), 129–147.

    MathSciNet  MATH  Google Scholar 

  3. J.M. Ball. A version of the fundamental theorem for Young measures. In Lect. Notes in Physics 344, Springer-Verlag, 1989, pp. 207–215.

  4. Y. Brenier, C. De Lellis, and L. Székelihidi, Jr.. Weak-strong uniqueness for measure-valued solutions Comm. Math. Phys.305(2) (2011), 351–361.

    MathSciNet  MATH  Google Scholar 

  5. A. Bressan, G. Crasta, and B. Piccoli. Well-posedness of the Cauchy problem for $n \times n$ systems of conservation laws. Memoirs of the AMS146(694) (2000).

  6. A. Bressan. Uniqueness and stability for one dimensional hyperbolic systems of conservation laws. In XIIIth International Congress on Mathematical Physics (London, 2000), Int. Press, Boston, MA, 2001, pp. 311-317.

  7. F. Berthelin, and F. Bouchut. Relaxation to isentropic gas dynamics for a BGK system with single kinetic entropy. Meth. Appl. Anal.9 (2002), 313–327.

    MathSciNet  MATH  Google Scholar 

  8. F. Bouchut. Entropy satisfying flux vector splittings and kinetic BGK models. Numer. Math.94 (2003), 623–672.

    MathSciNet  MATH  Google Scholar 

  9. F. Bouchut, and X. Lébrard. Convergence of the kinetic hydrostatic reconstruction scheme for the Saint Venant system with topography. Preprint https://hal-upec-upem.archives-ouvertes.fr/hal-01515256

  10. F. Berthelin. Convergence of flux vector splitting schemes with single entropy inequality for hyperbolic systems of conservation laws. Numer. Math.99 (2005), 585–604.

    MathSciNet  MATH  Google Scholar 

  11. Y. Brenier, C. De Lellis, and L. Székelyhidi, Jr.. Weak-strong uniqueness for measure-valued solutions. Commun. Math. Phys.305(2) (2011), 351–361.

    MathSciNet  MATH  Google Scholar 

  12. J. Březina, and E. Feireisl. Measure-valued solutions to the complete Euler system. J. Math. Soc. Jpn.70(4) (2018), 1227–1245.

    MathSciNet  MATH  Google Scholar 

  13. J. Březina, and E. Feireisl. Maximal dissipation principle for the complete Euler system. Preprint arXiv:1712.04761, 2018.

  14. E. Chiodaroli, C. De Lellis, and O. Kreml. Global ill-posedness of the isentropic system of gas dynamics. Comm. Pure Appl. Math.68(7) (2015), 1157–1190.

    MathSciNet  MATH  Google Scholar 

  15. C. Christoforou, M. Galanopoulou, and A.E. Tzavaras. A symmetrizable extension of polyconvex thermoelasticity and applications to zero-viscosity limits and weak-strong uniqueness. Commun. Part. Diff. Eq.43(7) (2018), 1019–1050.

    MathSciNet  MATH  Google Scholar 

  16. F. Coquel, and P. LeFloch. An entropy satisfying MUSCL scheme for systems of conservation laws. Numer. Math.74 (1996), 1–33.

    MathSciNet  MATH  Google Scholar 

  17. C. M. Dafermos. The second law of thermodynamics and stability. Arch. Rational Mech. Anal.94 (1979), 373–389.

    MathSciNet  MATH  Google Scholar 

  18. C. M. Dafermos. Hyperbolic Conservation Laws in Continuum Physics. Springer-Verlag, New York, 2000.

    MATH  Google Scholar 

  19. C. De Lellis, and L. Székelyhidi, Jr.. The Euler equations as a differential inclusion. Ann. of Math.170(2) (2009), 1417–1436.

    MathSciNet  MATH  Google Scholar 

  20. C. De Lellis, and L. Székelyhidi, Jr.. On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal.195(1) (2010), 225–260.

    MathSciNet  MATH  Google Scholar 

  21. S. Demoulini, D. M. A. Stuart, and A. E. Tzavaras. Weak-strong uniqueness of dissipative measure-valued solutions for polyconvex elastodynamics. Arch. Ration. Mech. Anal.205(3) (2012), 927–961.

    MathSciNet  MATH  Google Scholar 

  22. R. DiPerna. Uniqueness of solutions to hyperbolic conservation laws. Indiana Univ. Math. J.28 (1979), 137–188.

    MathSciNet  MATH  Google Scholar 

  23. R. DiPerna. Convergence of approximate solutions to conservation laws. Arch. Ration. Mech. Anal.82 (1983), 27–70.

    MathSciNet  MATH  Google Scholar 

  24. R. DiPerna. Measure valued solutions to conservation laws. Arch. Ration. Mech. Anal.88(3) (1985), 223–270.

    MathSciNet  MATH  Google Scholar 

  25. R. DiPerna, and A. Majda. Oscillations and concentrations in weak solutions of the incompressible fluid equations. Commun. Math. Phys.108(4) (1987), 667–689.

    MathSciNet  MATH  Google Scholar 

  26. E. Feireisl, P. Gwiazda, A. Świerczewska-Gwiazda, and E. Wiedemann. Dissipative measure-valued solutions to the compressible Navier–Stokes system. Calc. Var. Partial Differential Equations 55(6) (2016), 55–141.

    MathSciNet  MATH  Google Scholar 

  27. E. Feireisl, and M. Lukáčová-Medvid’ová. Convergence of a mixed finite element finite volume scheme for the isentropic Navier-Stokes system via dissipative measure-valued solutions, Found. Comput. Math.18(3) (2018), 703–730.

    MathSciNet  MATH  Google Scholar 

  28. E. Feireisl, C. Klingenberg, O. Kreml, and S. Markfelder. On oscillatory solutions to the complete Euler system. Preprint arXiv:1710.10918, 2017.

  29. M. Feistauer. Mathematical Methods in Fluid Dynamics. Pitman Monographs and Surveys in Pure and Applied Mathematics Series 67, Longman Scientific & Technical, Harlow, 1993.

  30. M. Feistauer, J. Felcman, and I. Straškraba. Mathematical and Computational Methods for Compressible Flow. Clarendon Press, Oxford, 2003.

    MATH  Google Scholar 

  31. U. Fjordholm. High-order accurate entropy stable numerical schemes for hyperbolic conservation laws. ETH Zürich dissertation Nr. 21025, 2013.

  32. U. Fjordholm, S. Mishra, and E. Tadmor. On the computation of measure-valued solutions. Acta Numer.25 (2016), 567–679.

    MathSciNet  MATH  Google Scholar 

  33. U. Fjordholm, S. Mishra, and E. Tadmor. Arbitrary order accurate essentially non-oscillatory entropy stable schemes for systems of conservation laws. SIAM J. Num. Anal.50(2) (2012), 544–573.

    MATH  Google Scholar 

  34. U. Fjordholm, R. Käppeli, S. Mishra, and E. Tadmor. Construction of approximate entropy measure-valued solutions for hyperbolic systems of conservation laws. Found. Comput. Math.17 (2017), 763–827.

    MathSciNet  MATH  Google Scholar 

  35. J. Glimm. Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math.18 (1965), 697–715.

    MathSciNet  MATH  Google Scholar 

  36. E. Godlewski, and P.-A. Raviart. Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer, New York, 1996.

    MATH  Google Scholar 

  37. P. Gwiazda, A. Świerczewska-Gwiazda, and E. Wiedemann. Weak-strong uniqueness for measure-valued solutions of some compressible fluid models. Nonlinearity28(11) (2015), 3873–3890.

    MathSciNet  MATH  Google Scholar 

  38. A. Harten. On the symmetric form of systems of conservation laws with entropy. J. Comput. Phys.49 (1983), 151–164.

    MathSciNet  MATH  Google Scholar 

  39. V. Jovanović, and Ch. Rohde. Error estimates for finite volume approximations of classical solutions for nonlinear systems of hyperbolic balance laws. SIAM J. Numer. Anal.43(6) (2006), 2423–2449.

    MathSciNet  MATH  Google Scholar 

  40. S. N. Kruzkhov. First order quasilinear equations in several independent variables. USSR Math. Sbornik10(2) (1970), 217–243.

    Google Scholar 

  41. D. Kröner. Numerical Schemes for Conservation Laws. John Wiley, Chichester, 1997.

    MATH  Google Scholar 

  42. D. Kröner,and W. M. Zajaczkowski. Measure-valued solutions of the Euler equations for ideal compressible polytropic fluids. Math. Methods Appl. Sci.19(3) (1996), 235–252.

    MathSciNet  MATH  Google Scholar 

  43. P. LeFloch, J.M. Mercier, and C. Rohde. Fully discrete, entropy conservative schemes of arbitrary order. SIAM J. Numer. Anal.40 (2002), 1968–1992.

    MathSciNet  MATH  Google Scholar 

  44. R. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Texts in Applied Mathematics, 2002.

  45. P.-L. Lions. Mathematical Topics in Fluid Mechanics, Vol. 1. Incompressible models. Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, 1996.

  46. A. Mielke. Flow properties for Young-measure solutions of semilinear hyperbolic problems. Proc. R. Soc. Edin. A-MA 129(1) (1999), 85–123.

    MathSciNet  MATH  Google Scholar 

  47. P. Pedregal. Parametrized Measures and Variational Principles. Birkhäuser, Basel, 1997.

    MATH  Google Scholar 

  48. B. Perthame, and C.-W. Shu. On positivity preserving finite volume schemes for Euler equations. Numer. Math.73 (1996), 119–130.

    MathSciNet  MATH  Google Scholar 

  49. S. Schochet. Examples of measure-valued solutions. Commun. Part. Diff. Eq.14(5) (1989), 545–575.

    MathSciNet  MATH  Google Scholar 

  50. D. Serre. Systems of Conservation Laws, 1: Hyperbolicity, Entropies, Shock Waves (English translation). Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  51. L. Székelyhidi, Jr., and E. Wiedemann. Young measures generated by ideal incompressible fluid flows. Arch. Rational Mech. Anal.206 (2012), 333–366.

    MathSciNet  MATH  Google Scholar 

  52. E. Tadmor. The numerical viscosity of entropy stable schemes for systems of conservation laws. Math. Comp.49(179) (1987), 91–103.

    MathSciNet  MATH  Google Scholar 

  53. E. Tadmor. Entropy stability theory for difference approximations of nonlinear conservation laws and related time dependent problems. Acta Numer.12 (2003), 451–512.

    MathSciNet  MATH  Google Scholar 

  54. E. Tadmor. Minimum entropy principle in the gas dynamic equations Appl. Num. Math.2 (1986), 211–219.

    MathSciNet  MATH  Google Scholar 

  55. E. Wiedemann. Weak-strong uniqueness in fluid dynamics. Partial differential equations in fluid mechanics, 289–326, London Math. Soc. Lecture Note Ser. 452, Cambridge Univ. Press, 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mária Lukáčová-Medvid’ová.

Additional information

Communicated by Eitan Tadmor.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of E. Feireisl and H. Mizerová leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ ERC Grant Agreement 320078. The Institute of Mathematics of the Academy of Sciences of the Czech Republic is supported by RVO: 67985840. The research of M. Lukáčová-Medvid’ová was supported by the German Science Foundation under the Collaborative Research Centers TRR 146 Multiscale Simulation Methods for Soft Matter Systems and TRR 165 Waves to Weather.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feireisl, E., Lukáčová-Medvid’ová, M. & Mizerová, H. Convergence of Finite Volume Schemes for the Euler Equations via Dissipative Measure-Valued Solutions. Found Comput Math 20, 923–966 (2020). https://doi.org/10.1007/s10208-019-09433-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-019-09433-z

Keywords

Mathematics Subject Classification

Navigation