Skip to main content
Log in

Mathematics of Smoothed Particle Hydrodynamics: A Study via Nonlocal Stokes Equations

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

Smoothed particle hydrodynamics (SPH) is a popular numerical technique developed for simulating complex fluid flows. Among its key ingredients is the use of nonlocal integral relaxations to local differentiations. Mathematical analysis of the corresponding nonlocal models on the continuum level can provide further theoretical understanding of SPH. We present, in this part of a series of works on the mathematics of SPH, a nonlocal relaxation to the conventional linear steady-state Stokes system for incompressible viscous flows. The nonlocal continuum model is characterized by a smoothing length \(\delta \) which measures the range of nonlocal interactions. It serves as a bridge between the discrete approximation schemes that involve a nonlocal integral relaxation and the local continuum models. We show that for a class of carefully chosen nonlocal operators, the resulting nonlocal Stokes equation is well-posed and recovers the original Stokes equation in the local limit when \(\delta \) approaches zero. For some other commonly used smooth kernels, there are risks in getting ill-posed continuum models that could lead to computational difficulties in practice. This leads us to discuss the implications of our finding on the design of numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M. Antuono, A. Colagrossi and S. Marrone. Numerical diffusive terms in weakly-compressible SPH schemes. Computer Physics Communications, 183(12), 2570–2580, (2012).

    MathSciNet  Google Scholar 

  2. J.T. Beale and A. Majda. High order accurate vortex methods with explicit velocity kernels. Journal of Computational Physics, 58(2), 188–208, (1985).

    MATH  Google Scholar 

  3. M. Bessa, J. Foster, T. Belytschko and W. K. Liu, A meshfree unification: reproducing kernel peridynamics, Computational Mechanics, 53, 1251–1264, (2014).

    MathSciNet  MATH  Google Scholar 

  4. T. Belytschko, Y. Guo, W. K. Liu and S. P. Xiao. A unified stability analysis of meshless particle methods. International Journal for Numerical Methods in Engineering, 48(9), 1359–1400, (2000).

    MathSciNet  MATH  Google Scholar 

  5. B. Ben Moussa and J. Vila, Convergence of SPH method for scalar nonlinear conservation laws, SIAM Journal on Numerical Analysis, 37, 863–887, (2000).

    MathSciNet  MATH  Google Scholar 

  6. J. Bender and D. Koschier. Divergence-free smoothed particle hydrodynamics. In Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 147–155, (2015).

  7. A. Chertock. A Practical Guide to Deterministic Particle Methods. Handbook of Numerical Analysis, 18, 177–202, (2017).

    MathSciNet  MATH  Google Scholar 

  8. A. Cohen and B. Perthame, Optimal approximations of transport equations by particle and pseudoparticle methods, SIAM J. Math. Anal., 32, 616–636, (2000).

    MathSciNet  MATH  Google Scholar 

  9. P. Constantin, Euler equations, Navier-Stokes equations and turbulence, in Mathematical foundation of turbulent viscous flows, in Lecture Notes in Math. 1871, Springer-Verlag, New York, 1–43, (2006),

  10. P. Constantin, G. Iyer and J. Wu. Global regularity for a modified critical dissipative quasi-geostrophic equation, Indiana University Mathematics Journal, 57, 2681–2692, (2008).

    MathSciNet  MATH  Google Scholar 

  11. G.H. Cottet and P. Koumoutsakos, Vortex Methods – Theory and Practice, New York, Cambridge Univ. Press., (2000).

    MATH  Google Scholar 

  12. S. J. Cummins and M. Rudman. An SPH projection method. Journal of computational physics, 152(2), 584–607, (1999).

    MathSciNet  MATH  Google Scholar 

  13. P. Degond and S. Mas-Gallic. The weighted particle method for convection-diffusion equations. Part 1, The case of an isotropic viscosity, Math. Comput. 53, 485–507, (1989).

  14. Q. Du, Nonlocal modeling, analysis and computation, CBMS-NSF regional conference series in applied mathematics, 94,SIAM, Philadelphia, (2019).

  15. Q. Du, M. Gunzburger, R. B. Lehoucq and K. Zhou. Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Review, 54, 667–696, (2012).

    MathSciNet  MATH  Google Scholar 

  16. Q. Du, M. Gunzburger, R. B. Lehoucq and K. Zhou. A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws, Mathematical Models and Methods in Applied Sciences (M3AS), 23, 493–540, (2013).

    MathSciNet  MATH  Google Scholar 

  17. Q. Du, R. Lehoucq and A. Tartakovsky, Integral approximations to classical diffusion and smoothed particle hydrodynamics, Comp. Meth. Appl. Mech. Engr, 286, 216–229, (2015).

    MathSciNet  MATH  Google Scholar 

  18. Q. Du and X. Tian. Stability of nonlocal Dirichlet integrals and implications for peridynamic correspondence material modeling, SIAM J. Applied Mathematics, 78, 1536–1552, (2018).

    MathSciNet  MATH  Google Scholar 

  19. Q. Du and J. Yang. Asymptotic compatible Fourier spectral approximations of nonlocal Allen-Cahn equations, SIAM J. Numerical Analysis, 54, 1899–1919, (2016).

    MathSciNet  MATH  Google Scholar 

  20. Q. Du, J. Yang and Z. Zhou. Analysis of a nonlocal-in-time parabolic equation, Discrete & Continuous Dynamical Systems - B, 22, 339–368, (2017).

    MathSciNet  MATH  Google Scholar 

  21. J. Eldredge, A. Leonard and T. Colonius, A general deterministic treatment of derivatives in particle methods, J. Comput. Phys. 180, 686–709, (2002).

    MATH  Google Scholar 

  22. M. Ellero, M. Serrano and P. Espanol. Incompressible smoothed particle hydrodynamics. Journal of Computational Physics, 226(2), 1731–1752, (2007).

    MathSciNet  MATH  Google Scholar 

  23. R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics, theory and application to non-spherical stars, Monthly Notices Royal Astronomical Society, 181, 375–389, (1977).

    MATH  Google Scholar 

  24. M. Hein, J.-Y. Audibert and U. von Luxburg. From graphs to manifolds - weak and strong pointwise consistency of graph Laplacians. In Proceedings of the 18th Annual Conference on Learning Theory, COLT’05, pages 470–485, Berlin, Heidelberg, Springer-Verlag. (2005).

  25. X. Hu and N. A. Adams. An incompressible multi-phase SPH method. Journal of computational physics, 227(1), 264–278, (2007).

    MATH  Google Scholar 

  26. X. Hu and N. Adams. A constant-density approach for incompressible multi-phase SPH. Journal of Computational Physics, 228(6), 2082–2091, (2009).

    MATH  Google Scholar 

  27. N. Katz and N. Pavlovic. A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation, Geom. Funct. Anal. 12, 355–379, (2002).

    MathSciNet  MATH  Google Scholar 

  28. P. Koumoutsakos, Multiscale flow simulations using particles, Annu. Rev. Fluid Mech., 37, 457–487, (2005).

    MathSciNet  MATH  Google Scholar 

  29. E.-S. Lee, C. Moulinec, R. Xu, D. Violeau, D. Laurence, and P. Stansby. Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method, Journal of Computational Physics, 227, 8417–8436, (2008).

    MathSciNet  MATH  Google Scholar 

  30. H. Lee and Q. Du, Asymptotically Compatible SPH-Like Particle Discretizations of One Dimensional Linear Advection Models, SIAM Journal on Numerical Analysis, 57, 127–147, (2019).

    MathSciNet  MATH  Google Scholar 

  31. H. Lee and Q. Du, Nonlocal gradient operators with a nonspherical interaction neighborhood and their applications, arXiv preprint arXiv:1903.06025, (2019).

  32. Z. Li, Z. Shi and J. Sun. Point integral method for solving poisson-type equations on manifolds from point clouds with convergence guarantees, Communications in Computational Physics, 22, 228–258, (2017).

    MathSciNet  Google Scholar 

  33. M.B. Liu and G.R. Liu. Smoothed Particle Hydrodynamics (SPH): an Overview and Recent Developments, Arch Comput Methods Eng 17, 25–76, (2010).

    MathSciNet  MATH  Google Scholar 

  34. L.B. Lucy, A numerical approach to the testing of the fission hypothesis. Astron. J, 82, 1013–1024, (1977).

    Google Scholar 

  35. T. Mengesha and Q. Du. Nonlocal Constrained Value Problems for a Linear Peridynamic Navier Equation, Journal of Elasticity, 116, 27–51, (2014).

    MathSciNet  MATH  Google Scholar 

  36. T. Mengesha and Q. Du. The bond-based peridynamic system with Dirichlet-type volume constraint, Proceedings of the Royal Society of Edinburgh, 144A, 161–186, (2014).

    MathSciNet  MATH  Google Scholar 

  37. T. Mengesha and Q. Du. On the variational limit of a class of nonlocal functionals related to peridynamics, Nonlinearity, 28, 3999–4035, (2015).

    MathSciNet  MATH  Google Scholar 

  38. T. Mengesha and Q. Du. Characterization of function spaces of vector fields via nonlocal derivatives and an application in peridynamics, Nonlinear Analysis A, Theory, Methods and Applications, 140, 82–111, (2016).

    MATH  Google Scholar 

  39. J.J. Monaghan. Smoothed particle hydrodynamics, Rep. Prog. Phys., 68, 1703–1759, (2005).

    MathSciNet  MATH  Google Scholar 

  40. B. Nadler, G. Lafon, R.B. Coifman and I.G, Kevrekidis. Diffusion maps, spectral clustering and reaction coordinates of dynamical systems. Applied and Computational Harmonic Analysis, 21, 113–127, (2006).

    MathSciNet  MATH  Google Scholar 

  41. P. Nair and G. Tomar. Volume conservation issues in incompressible smoothed particle hydrodynamics. Journal of Computational Physics, 297, 689–699, (2015).

    MathSciNet  MATH  Google Scholar 

  42. J. Pozorski and A. Wawreńczuk. SPH computation of incompressible viscous flows. Journal of Theoretical and Applied Mechanics, 40(4), 917–937, (2002).

    Google Scholar 

  43. D. J. Price, Smoothed particle hydrodynamics and magnetohydrodynamics, J. Comput. Phys. 231, 759–794, (2012).

    MathSciNet  MATH  Google Scholar 

  44. B. Schrader, S. Reboux, and I. Sbalzarini. Discretization correction of general integral PSE Operators for particle methods. Journal of Computational Physics, 229, 4159–4182, (2010).

    MathSciNet  MATH  Google Scholar 

  45. S. Shao and E. Y. M. Lo. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface, Advances in Water Resources, 26, 787–800, (2003).

    Google Scholar 

  46. S.A. Silling. Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48, 175–209, (2000).

    MathSciNet  MATH  Google Scholar 

  47. E. Tadmor and C. Tan. Critical thresholds in flocking hydrodynamics with non-local alignment. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 372, 20130401, (2014).

    MathSciNet  MATH  Google Scholar 

  48. T. Tao. Global regularity for a logarithmically supercritical hyperdissipative Navier–Stokes equation, Analysis and PDE, 2, 361–366, (2010).

    MathSciNet  MATH  Google Scholar 

  49. X. Tian and Q. Du. Asymptotically compatible schemes and applications to robust discretization of nonlocal models. SIAM J. Numerical Analysis, 52, 1641–1665, (2014).

    MathSciNet  MATH  Google Scholar 

  50. A. Tornberg and B. Engquist, Numerical approximations of singular source terms in differential equations. Journal of Computational Physics, 200, 462–488, (2004).

    MathSciNet  MATH  Google Scholar 

  51. Y. Zhang, Q. Du and Z. Shi, Nonlocal Stokes equation with relaxation on the divergence free equation, preprint, (2019).

Download references

Acknowledgements

The authors would like to thank R. Lehoucq, J. Foster and A. Tartakovsky for discussions on related subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Du.

Additional information

Eitan Tadmor.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported in part by the U.S. NSF Grants DMS-1719699 and DMS-1819233, AFOSR MURI center for material failure prediction through peridynamics, and ARO MURI Grant W911NF-15-1-0562.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Q., Tian, X. Mathematics of Smoothed Particle Hydrodynamics: A Study via Nonlocal Stokes Equations. Found Comput Math 20, 801–826 (2020). https://doi.org/10.1007/s10208-019-09432-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-019-09432-0

Keywords

Mathematics Subject Classification

Navigation