Skip to main content
Log in

Neochloris oleoabundans Growth Evaluation Under Different Nitrogen:Phosphorus:Carbon Feeding Strategies

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Microalgae are photosynthetic microorganisms known for their variety of compounds that can be useful for food, feed, pharmaceuticals, and fuel industries. Microalgae production costs have been one of the major obstacles to large-scale commercial production. Therefore, several studies are still being performed aiming to increase biomass by developing novel photobioreactor design and microalgae cultivation techniques. This work’s purpose is to increase Neochloris oleoabundans biomass. Different nutrient-feeding regimes were tested in N. oleoabundans cultivation in Erlenmeyer flasks and bench-scale tubular photobioreactor. In Erlenmeyer flasks, the best concentrations of nitrate and phosphate were 8.82 mM and 5.16 mM, respectively. In bench-scale tubular photobioreactor, NaNO3 proved to be the best nitrogen source, in comparison with (NH4)2SO4 and NH4NO3. Still in the photobioreator, the addition of nitrate by fed-batch process combined with automated system of CO2 feeding showed to be of utmost importance for insuring a high density of N. oleoabundans. The essential nutrients evaluated in this work play an important role on N. oleoabundans biomass accumulation, as well as the photobioreactor configuration and feeding regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274. https://doi.org/10.1007/s10295-008-0495-6

    Article  PubMed  CAS  Google Scholar 

  2. Hu Q, Sommerfeld M, Jarvis E et al (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639. https://doi.org/10.1111/j.1365-313X.2008.03492.x

    Article  PubMed  CAS  Google Scholar 

  3. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  Google Scholar 

  4. Pruvost J, Van Vooren G, Cogne G, Legrand J (2009) Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor. Bioresour Technol 100:5988–5995. https://doi.org/10.1016/j.biortech.2009.06.004

    Article  PubMed  CAS  Google Scholar 

  5. Murray KE, Healy FG, McCord RS, Shields JA (2011) Biomass production and nutrient uptake by Neochloris oleoabundans in an open trough system. Appl Microbiol Biotechnol 90:89–95. https://doi.org/10.1007/s00253-010-3054-9

    Article  PubMed  CAS  Google Scholar 

  6. Hajar HAA, Riefler RG, Stuart BJ (2017) Cultivation of the microalga Neochloris oleoabundans for biofuels production and other industrial applications (a review). Appl Biochem Microbiol 53:640–653. https://doi.org/10.1134/S0003683817060096

    Article  Google Scholar 

  7. Da Silva TL, Reis A, Medeiros R et al (2009) Oil production towards biofuel from autotrophic microalgae semicontinuous cultivations monitorized by flow cytometry. Appl Biochem Biotechnol 159:568–578. https://doi.org/10.1007/s12010-008-8443-5

    Article  PubMed  CAS  Google Scholar 

  8. Li Y, Horsman M, Wang B et al (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636. https://doi.org/10.1007/s00253-008-1681-1

    Article  PubMed  CAS  Google Scholar 

  9. Gouveia L, Evangelista A, Lopes T, Reis A (2009) Neochloris oleabundans UTEX # 1185: a suitable renewable lipid source for biofuel production. J Ind Microbiol Biotechnol. https://doi.org/10.1007/s10295-009-0559-2

    Article  PubMed  Google Scholar 

  10. Trotta P (1981) A simple and inexpensive system for continuous monoxenic mass culture of marine microalgae. Aquaculture 22:383–387

    Article  Google Scholar 

  11. Belay A (1997) Mass culture of Spirulina outdoors: the earthrise farms experience. In: Vonshak A (ed) Spirulina platensis (Arthrospira), physiology, cell biology and biotechnology. Taylor & Francis, London

    Google Scholar 

  12. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2007.02.001

    Article  PubMed  Google Scholar 

  13. Boussiba S, Richmond AE (1980) C-phycocyanin as a storage protein in the blue-green alga Spirulina platensis. Arch Microbiol. https://doi.org/10.1007/BF00403211

    Article  Google Scholar 

  14. Becker EW (1994) Microalgae—biotechnology and microbiology. Cambridge University Press, New york

    Google Scholar 

  15. Pérez-Mora LS, Matsudo MC, Cezare-Gomes EA, Carvalho JCM (2016) An investigation into producing Botryococcus braunii in a tubular photobioreactor. J Chem Technol Biotechnol 91:3053–3060. https://doi.org/10.1002/jctb.4934

    Article  CAS  Google Scholar 

  16. Carvalho JCM, Matsudo MC, Bezerra RP et al (2014) Microalgae bioreactors. In: Bajpai R, et al. (eds) Algal biorefineries. Springer, New York

    Google Scholar 

  17. Watanabe Y, Hall DO (1996) Photosynthetic production of the filamentous cyanobacterium Spirulina platensis in a cone-shaped helical tubular photobioreactor. Appl Microbiol Biotechnol. https://doi.org/10.1007/s002530050618

    Article  Google Scholar 

  18. UTEX The Culture Collection of Algae at the University of Texas at Austin. https://utex.org/products/bold-3n-medium?variant=30991784345690#recipe

  19. Yang C, Liu H, Li M et al (2008) Treating urine by Spirulina platensis. Acta Astronaut 63:1049–1054. https://doi.org/10.1016/j.actaastro.2008.03.008

    Article  CAS  Google Scholar 

  20. Tornabene TG, Holzer G, Lien S, Burris N (1983) Lipid composition of the nitrogen starved green alga Neochloris oleoabundans. Enzyme Microb Technol. https://doi.org/10.1016/0141-0229(83)90026-1

    Article  Google Scholar 

  21. Tornabene TG, Holzer G, Lien S, Burris N (1983) Lipid-composition of the nitrogen starved green-alga Neochloris oleoabundans. Enzym Microb Tech. https://doi.org/10.1016/0141-0229(83)90026-1

    Article  Google Scholar 

  22. Ferreira LSLSS, Rodrigues MSMSS, Converti A et al (2012) Kinetic and growth parameters of Arthrospira (Spirulina) platensis cultivated in tubular photobioreactor under different cell circulation systems. Biotechnol Bioeng 109:444–450. https://doi.org/10.1002/bit.23315

    Article  PubMed  CAS  Google Scholar 

  23. Carlozzi P, Pinzani E (2005) Growth characteristics of Arthrospira platensis cultured inside a new closed-coil photobioreactor incorporating a mandrel to control culture temperature. Biotechnol Bioeng 90:675–684

    Article  CAS  Google Scholar 

  24. Razzak SA (2019) In situ biological CO2 fixation and wastewater nutrient removal with Neochloris oleoabundans in batch photobioreactor. Bioprocess Biosyst Eng 42:93–105. https://doi.org/10.1007/s00449-018-2017-x

    Article  PubMed  CAS  Google Scholar 

  25. Grobbelaar JU (2004) Handbook of microalgal culture: biotechnology and applied phycology. In: Richmond A (ed) Handbook of microalgal culture. Blackwell Publishing Ltd., Hoboken, pp 97–115

    Google Scholar 

  26. Leduy A, Therien N (1977) An improved method for optical density measurement of the semimicroscopic blue algae Spirulina maxima. Biotechnol Bioeng 19:1219–1224

    Article  Google Scholar 

  27. Cataldo DA, Maroon M, Schrader LE, Youngs VL (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid 1. Commun Soil Sci Plant Anal 6:71–80. https://doi.org/10.1080/00103627509366547

    Article  CAS  Google Scholar 

  28. Solorzano L (1969) Determination of ammonia in natural waters by the phenol hypochloride method. Limnol Ocean 14:799–801

    Article  CAS  Google Scholar 

  29. Ahmadzadeh MTH, Huang ST, Murry MA (2001) Growth of Chlorella vulgaris in high concentrations of nitrate and nitrite for wastewater treatment. https://doi.org/10.2174/2211550104666150930204835

  30. Tiso M, Schechter AN (2015) Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions. PLoS ONE 10:1–18. https://doi.org/10.1371/journal.pone.0119712

    Article  CAS  Google Scholar 

  31. Hu Q (2013) Environmental effects on cell composition. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, 2nd edn. Wiley Blackwell, New York, pp 114–122

    Chapter  Google Scholar 

  32. Sánchez Mirón A, Cerón García MC, Contreras Gómez A et al (2003) Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem Eng J 16:287–297. https://doi.org/10.1016/S1369-703X(03)00072-X

    Article  CAS  Google Scholar 

  33. Kurano N, Sasaki T, Miyachi S (1998) Carbon dioxide and microalgae. In: Inui T, Anpo M, Izui K, et al. (eds) Advances in chemical conversions for miticating carbon dioxide/studies in surface science and catalysis. Elsevier Science BV, New York, pp 55–63

    Google Scholar 

  34. Silva HJ, Pirt SJ (1984) Carbon dioxide inhibition of photosynthetic growth of Chlorella. J Gen Microbiol 130:2833–2838

    CAS  Google Scholar 

  35. Wang B, Lan CQ (2011) Biomass production and nitrogen and phosphorus removal by the green alga Neochloris oleoabundans in simulated wastewater and secondary municipal wastewater effluent. Bioresour Technol 102:5639–5644. https://doi.org/10.1016/j.biortech.2011.02.054

    Article  PubMed  CAS  Google Scholar 

  36. Wang B, Lan CQ (2011) Optimising the lipid production of the green alga Neochloris oleoabundans using box-behnken experimental design. Can J Chem Eng 89:932–939. https://doi.org/10.1002/cjce.20513

    Article  CAS  Google Scholar 

  37. Converti A, Casazza AA, Ortiz EY et al (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process Process Intensif 48:1146–1151. https://doi.org/10.1016/j.cep.2009.03.006

    Article  CAS  Google Scholar 

  38. Matsudo MC, Bezerra RP, Sato S et al (2012) Photosynthetic efficiency and rate of CO2 assimilation by Arthrospira (Spirulina) platensis continuously cultivated in a tubular photobioreactor. Biotechnol J 7:1412–1417. https://doi.org/10.1002/biot.201200177

    Article  PubMed  CAS  Google Scholar 

  39. Grobbelaar J (2004) Algal nutrition: mineral nutrition. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Publishing Ltd., Hoboken, pp 97–115

    Google Scholar 

  40. Santos AM, Lamers PP, Janssen M, Wijffels RH (2013) Biomass and lipid productivity of Neochloris oleoabundans under alkaline—saline conditions. ALGAL 2:204–211. https://doi.org/10.1016/j.algal.2013.04.007

    Article  Google Scholar 

  41. Santos AM, Lamers PP, Janssen M, Wijffels RH (2013) Biomass and lipid productivity of Neochloris oleoabundans under alkaline-saline conditions. Algal Res 2:204–211. https://doi.org/10.1016/j.algal.2013.04.007

    Article  Google Scholar 

  42. Carvalho JCM, Bezerra RP, Matsudo MC, Sato S (2013) Cultivation of Arthrospira (Spirulina) platensis by fed-batch process. In: Lee J (ed) Advanced biofuels and bioproducts. Springer, New York, pp 781–805

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors acknowledge CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), CAPES/001 - Ivan Alejandro Ávila-León, and FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) Grant No. 10/51503-4 for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João C. M. Carvalho.

Ethics declarations

Conflict of interest

All Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avila-León, I.A., Ferreira-Camargo, L.S., Matsudo, M.C. et al. Neochloris oleoabundans Growth Evaluation Under Different Nitrogen:Phosphorus:Carbon Feeding Strategies. Curr Microbiol 77, 3270–3277 (2020). https://doi.org/10.1007/s00284-020-02149-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02149-2

Navigation