Skip to main content

Advertisement

Log in

Energy Generation in Single Chamber Microbial Fuel Cell from Pure and Mixed Culture Bacteria by Copper Reduction

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, a single chamber microbial fuel cell (SCMFC) with nano-polypyrrole modified graphite felt as anode- and platinum-coated carbon cloth as cathode was employed to reduce the amount of copper, Cu2+, in synthetic wastewater. The performance of the SCMFC was studied for two inocula, Shewanella putrefaciens and mixed culture. Maximum tolerable concentrations of 50 mg/L and 70 mg/L of copper and power densities of 0.33 W/m2 and 0.304 W/m2 were achieved, respectively, for the pure and mixed cultures. The study shows that microbial tolerance level towards the toxicity of metal strongly influences the MFC performance and the pure culture showed better performance than mixed culture over the Cu toxicity. This study exhibits the possibility of using single chamber microbial fuel cell for treating wastewater containing copper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cristiani, P.; Carvalho, M.L.; Guerrini, E.; Daghio, M.; Santoro, C.; Li, B.: Bioelectrochemistry cathodic and anodic bio fi lms in single chamber. Microbial Fuel Cells 9, 6–13 (2013). https://doi.org/10.1016/j.bioelechem.2013.01.005

    Article  Google Scholar 

  2. Feng, C.; Li, F.; Liu, H.; Lang, X.; Fan, S.: A dual-chamber microbial fuel cell with conductive film-modified anode and cathode and its application for the neutral electro-Fenton process. Electrochim. Acta 55, 2048–2054 (2010). https://doi.org/10.1016/j.electacta.2009.11.033

    Article  Google Scholar 

  3. Mustakeem, M.: Electrode materials for microbial fuel cells: nanomaterial approach. Mater. Renew. Sustain. Energy 4, 1–11 (2015). https://doi.org/10.1007/s40243-015-0063-8

    Article  Google Scholar 

  4. Tang, X.; Li, H.; Du, Z.; Wang, W.; Ng, H.Y.: Conductive polypyrrole hydrogels and carbon nanotubes composite as an anode for microbial fuel cells. RSC Adv. 5, 50968–50974 (2015). https://doi.org/10.1039/C5RA06064H

    Article  Google Scholar 

  5. Mathuriya, A.S.; Yakhmi, J.V.: Microbial fuel cells to recover heavy metals. Environ. Chem. Lett. 12, 483–494 (2014). https://doi.org/10.1007/s10311-014-0474-2

    Article  Google Scholar 

  6. Li, Y.; Wu, Y.; Puranik, S.; Lei, Y.; Vadas, T.; Li, B.: Metals as electron acceptors in single-chamber microbial fuel cells. J. Power Sources 269, 430–439 (2014). https://doi.org/10.1016/j.jpowsour.2014.06.117

    Article  Google Scholar 

  7. Abourached, C.; Catal, T.; Liu, H.: Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production. Water Res. 51, 228–233 (2014). https://doi.org/10.1016/j.watres.2013.10.062

    Article  Google Scholar 

  8. Wu, Y.; Zhao, X.; Jin, M.; Li, Y.; Li, S.; Kong, F.: Copper removal and microbial community analysis in single-chamber microbial fuel cell. Bioresour. Technol. 253, 372–377 (2018). https://doi.org/10.1016/j.biortech.2018.01.046

    Article  Google Scholar 

  9. Rikame, S.S.; Mungray, A.A.; Mungray, A.K.: Modification of anode electrode in microbial fuel cell for electrochemical recovery of energy and copper metal. Electrochim. Acta 275, 8–17 (2018). https://doi.org/10.1016/j.electacta.2018.04.141

    Article  Google Scholar 

  10. Rodenas, M.; Peter, H.; Van der Weijden, R.; Saakes, M.; Buisman, C.J.N.; Sleutels, T.H.J.A.: High rate copper and energy recovery in microbial fuel cells. Front. Microbiol. 6, 1–8 (2015). https://doi.org/10.3389/fmicb.2015.00527

    Article  Google Scholar 

  11. Roshan, V.; Chen, C.; Chen, H.; Chen, C.; Ming, Y.; Tseng, M.: Comparative bioelectricity production from various wastewaters in microbial fuel cells using mixed cultures and a pure strain of Shewanella oneidensis. Bioresour. Technol. 104, 315–323 (2012). https://doi.org/10.1016/j.biortech.2011.09.129

    Article  Google Scholar 

  12. Sumisha, A.; Haribabu, K.: Modification of graphite felt using nano polypyrrole and polythiophene for microbial fuel cell applications-a comparative study. Int. J. Hydrogen Energy 43, 3308–3316 (2018). https://doi.org/10.1016/j.ijhydene.2017.12.175

    Article  Google Scholar 

  13. Sekar, A.D.; Jayabalan, T.; Muthukumar, H.; Chandrasekaran, N.I.; Mohamed, S.N.; Matheswaran, M.: Enhancing power generation and treatment of dairy waste water in microbial fuel cell using Cu-doped iron oxide nanoparticles decorated anode. Energy 173, 80 (2019). https://doi.org/10.1016/j.energy.2019.01.102

    Article  Google Scholar 

  14. Singh, S.; Park, I.S.; Shin, Y.; Lee, Y.S.: Comparative study on antimicrobial efficiency of AgSiO2, ZnAg and AgZeolite for the application of fishery plastic container. J. Mater. Sci. Eng. 4, 180 (2015)

    Google Scholar 

  15. Wang, Y.; Wu, J.; Yang, S.; Li, H.; Li, X.: Electrode modification and optimization in air-cathode single-chamber microbial fuel cells. Int. J. Environ. Res. Public Health. 15, 1349 (2018). https://doi.org/10.3390/ijerph15071349

    Article  Google Scholar 

  16. Yang, S.; Jia, B.; Liu, H.: Effects of the Pt loading side and cathode-biofilm on the performance of a membrane-less and single-chamber microbial fuel cell. Bioresour. Technol. 100, 1197–1202 (2009). https://doi.org/10.1016/j.biortech.2008.08.005

    Article  Google Scholar 

  17. Liu, H.; Logan, B.E.: Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 38, 4040–4046 (2004). https://doi.org/10.1021/es0499344

    Article  Google Scholar 

  18. Vullo, D.L.; Ceretti, H.M.; Daniel, M.A.; Ramírez, S.A.M.; Zalts, A.: Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2E. Bioresour. Technol. 99, 5574–5581 (2008). https://doi.org/10.1016/j.biortech.2007.10.060

    Article  Google Scholar 

  19. Mahmoudkhani, R.; Torabian, A.; Hassani, A.H.; Mahmoudkhani, R.: Copper, cadmium and ferrous removal by membrane bioreactor. APCBEE Procedia. 10, 79–83 (2014). https://doi.org/10.1016/j.apcbee.2014.10.020

    Article  Google Scholar 

  20. Katsou, E.; Malamis, S.; Loizidou, M.: Performance of a membrane bioreactor used for the treatment of wastewater contaminated with heavy metals. Bioresour. Technol. 102, 4325–4332 (2011). https://doi.org/10.1016/j.biortech.2010.10.118

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haribabu Krishnan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anappara, S., Kanirudhan, A., Prabakar, S. et al. Energy Generation in Single Chamber Microbial Fuel Cell from Pure and Mixed Culture Bacteria by Copper Reduction. Arab J Sci Eng 45, 7719–7724 (2020). https://doi.org/10.1007/s13369-020-04832-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04832-9

Keywords

Navigation