Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

De novo engineering of intracellular condensates using artificial disordered proteins

Abstract

Phase separation of intrinsically disordered proteins (IDPs) is a remarkable feature of living cells to dynamically control intracellular partitioning. Despite the numerous new IDPs that have been identified, progress towards rational engineering in cells has been limited. To address this limitation, we systematically scanned the sequence space of native IDPs and designed artificial IDPs (A-IDPs) with different molecular weights and aromatic content, which exhibit variable condensate saturation concentrations and temperature cloud points in vitro and in cells. We created A-IDP puncta using these simple principles, which are capable of sequestering an enzyme and whose catalytic efficiency can be manipulated by the molecular weight of the A-IDP. These results provide a robust engineered platform for creating puncta with new, phase-separation-mediated control of biological function in living cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Artificial intrinsically disordered polypeptides inspired from native IDPs exhibit reversible UCST phase behaviour.
Fig. 2: Control of the UCST cloud point using main-chain amino acid composition.
Fig. 3: Control of UCST cloud point by molecular weight of A-IDP.
Fig. 4: A-IDPs exhibit tunable intracellular droplet formation on the basis of the molecular weight and ratio of aromatic to aliphatic content.
Fig. 5: A-IDPs exhibit reversible coacervation in E. coli determined by their molecular weight and aromatic:aliphatic ratio.
Fig. 6: Engineered intracellular droplets with programmable function.
Fig. 7: Engineered intracellular droplets with programmable function.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within this Article and its Supplementary Information. Material requests should be made to chilkoti@duke.edu.

References

  1. Babu, M. M. The contribution of intrinsically disordered regions to protein function, cellular complexity, and human disease. Biochem. Soc. Trans. 44, 1185–1200 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wright, P. E. & Dyson, H. J. Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell. Biol. 16, 18–29 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Uversky, V. N., Kuznetsova, I. M., Turoverov, K. K. & Zaslavsky, B. Intrinsically disordered proteins as crucial constituents of cellular aqueous two phase systems and coacervates. FEBS Lett. 589, 15–22 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Boeynaems, S. et al. Protein phase separation: a new phase in cell biology. Trends Cell. Biol. 28, 420–435 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sickmeier, M. et al. DisProt: the database of disordered proteins. Nucleic Acids Res. 35, D786–D793 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Brangwynne, C. P., Tompa, P. & Pappu, R. V. Polymer physics of intracellular phase transitions. Nat. Phys. 11, 899–904 (2015).

    Article  CAS  Google Scholar 

  7. Lin, Y., Currie, S. L. & Rosen, M. K. Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs. J. Biol. Chem. 292, 19110–19120 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pak, C. W. et al. Sequence determinants of intracellular phase separation by complex coacervation of a disordered protein. Mol. Cell. 63, 72–85 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Elbaum-Garfinkle, S. et al. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc. Natl Acad. Sci. USA 112, 7189–7194 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lin, Y., Protter, D. S., Rosen, M. K. & Parker, R. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell. 60, 208–219 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nott, T. J. et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell. 57, 936–947 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Molliex, A. et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Franzmann, T. M. et al. Phase separation of a yeast prion protein promotes cellular fitness. Science 359, aao5654 (2018).

  14. Best, R. B. Computational and theoretical advances in studies of intrinsically disordered proteins. Curr. Opin. Struct. Biol. 42, 147–154 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Dignon, G. L., Zheng, W., Best, R. B., Kim, Y. C. & Mittal, J. Relation between single-molecule properties and phase behavior of intrinsically disordered proteins. Proc. Natl Acad. Sci. USA 115, 9929–9934 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dignon, G. L., Zheng, W., Kim, Y. C., Best, R. B. & Mittal, J. Sequence determinants of protein phase behavior from a coarse-grained model. PLoS Comput. Biol. 14, e1005941 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Mao, A. H., Crick, S. L., Vitalis, A., Chicoine, C. L. & Pappu, R. V. Net charge per residue modulates conformational ensembles of intrinsically disordered proteins. Proc. Natl Acad. Sci. USA 107, 8183–8188 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dzuricky, M., Roberts, S. & Chilkoti, A. Convergence of artificial protein polymers and intrinsically disordered proteins. Biochemistry 57, 2405–2414 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Quiroz, F. G. & Chilkoti, A. Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers. Nat Mater. 14, 1164–1171 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Meyer, D. E. & Chilkoti, A. Quantification of the effects of chain length and concentration on the thermal behavior of elastin-like polypeptides. Biomacromolecules 5, 846–851 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Li, Z., Tyrpak, D. R., Lien, C.-L. & MacKay, J. A. Tunable assembly of protein-microdomains in living vertebrate embryos. Adv. Biosyst. 2, 1800112 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Shi, P., Lin, Y. A., Pastuszka, M., Cui, H. & Mackay, J. A. Triggered sorting and co-assembly of genetically engineered protein microdomains in the cytoplasm. Adv. Mater. 26, 449–454 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Huber, M. C. et al. Designer amphiphilic proteins as building blocks for the intracellular formation of organelle-like compartments. Nat. Mater. 14, 125–132 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Pastuszka, M. K. et al. A tunable and reversible platform for the intracellular formation of genetically engineered protein microdomains. Biomacromolecules 13, 3439–3444 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Qamar, S. et al. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation–π interactions. Cell 173, 720–734 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

  28. Lin, Y. H., Forman-Kay, J. D. & Chan, H. S. Sequence-specific polyampholyte phase separation in membraneless organelles. Phys. Rev. Lett. 117, 178101 (2016).

    Article  PubMed  CAS  Google Scholar 

  29. Li, L., Luo, T. & Kiick, K. L. Temperature-triggered phase separation of a hydrophilic resilin-like polypeptide. Macromol. Rapid Commun. 36, 90–95 (2015).

    Article  PubMed  CAS  Google Scholar 

  30. Balu, R. et al. An16-resilin: an advanced multi-stimuli-responsive resilin-mimetic protein polymer. Acta Biomater. 10, 4768–4777 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Uversky, V. N. & Dunker, A. K. Understanding protein non-folding. Biochim. Biophys. Acta 1804, 1231–1264 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Theillet, F. X. et al. The alphabet of intrinsic disorder: I. Act like a Pro: on the abundance and roles of proline residues in intrinsically disordered proteins. Intrinsically Disord. Proteins 1, e24360 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kyte, J. & Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982).

    Article  CAS  PubMed  Google Scholar 

  34. Wimley, W. C. & White, S. H. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat. Struct. Mol. Biol. 3, 842–848 (1996).

    Article  CAS  Google Scholar 

  35. Das, R. K. & Pappu, R. V. Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. Proc. Natl Acad. Sci. USA 110, 13392–13397 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lin, Y. H. & Chan, H. S. Phase separation and single-chain compactness of charged disordered proteins are strongly correlated. Biophys. J. 112, 2043–2046 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Urry, D. W. et al. Hydrophobicity scale for proteins based on inverse temperature transitions. Biopolymers 32, 1243–1250 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Van Roey, K. et al. Short linear motifs: ubiquitous and functionally diverse protein interaction modules directing cell regulation. Chem. Rev. 114, 6733–6778 (2014).

    Article  PubMed  CAS  Google Scholar 

  39. Martin, E. W. et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367, 694–699 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. MacEwan, S. R. et al. Phase behavior and self-assembly of perfectly sequence-defined and monodisperse multiblock copolypeptides. Biomacromolecules 18, 599–609 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Muiznieks, L. D. & Keeley, F. W. Proline periodicity modulates the self-assembly properties of elastin-like polypeptides. J. Biol. Chem. 285, 39779–39789 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bochicchio, B., Pepe, A. & Tamburro, A. M. Investigating by CD the molecular mechanism of elasticity of elastomeric proteins. Chirality 20, 985–994 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Rubinstein, M. & Colby, R. H. Polymer Physics (Oxford Univ. Press, 2003).

  44. Bracha, D. et al. Mapping local and global liquid phase behavior in living cells using photo-oligomerizable seeds. Cell 175, 1467–1480 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Strulson, C. A., Molden, R. C., Keating, C. D. & Bevilacqua, P. C. RNA catalysis through compartmentalization. Nat. Chem. 4, 941–946 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Banjade, S. & Rosen, M. K. Phase transitions of multivalent proteins can promote clustering of membrane receptors. eLife https://doi.org/10.7554/eLife.04123 (2014).

  48. Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hofmann, J. & Sernetz, M. A kinetic study on the enzymatic hydrolysis of fluoresceindiacetate and fluorescein-di-β-d-galactopyranoside. Analytical biochemistry 131, 180–186 (1983).

    Article  CAS  PubMed  Google Scholar 

  50. Lewis, P., Nwoguh, C., Barer, M., Harwood, C. & Errington, J. Use of digitized video microscopy with a fluorogenic enzyme substrate to demonstrate cell‐and compartment‐specific gene expression in Salmonella enteritidis and Bacillus subtilis. Molecular microbiology 13, 655–662 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Broome, A. M., Bhavsar, N., Ramamurthy, G., Newton, G. & Basilion, J. P. Expanding the utility of β-galactosidase complementation: piece by piece. Mol. Pharm. 7, 60–74 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Moosmann, P. & Rusconi, S. Alpha complementation of LacZ in mammalian cells. Nucleic Acids Res. 24, 1171–1172 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Manders, E., Stap, J., Brakenhoff, G., Van Driel, R. & Aten, J. Dynamics of three-dimensional replication patterns during the S-phase, analysed by double labelling of DNA and confocal microscopy. J. Cell Sci. 103, 857–862 (1992).

    Article  CAS  PubMed  Google Scholar 

  54. Duan, X., Chen, J. & Wu, J. Improving the thermostability and catalytic efficiency of Bacillus deramificans pullulanase by site-directed mutagenesis. Appl. Environ. Microbiol. 79, 4072–4077 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Goldsmith, M. & Tawfik, D. S. Enzyme engineering: reaching the maximal catalytic efficiency peak. Curr. Opin. Struct. Biol. 47, 140–150 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Nayeem, A. et al. Engineering enzymes for improved catalytic efficiency: a computational study of site mutagenesis in epothilone-B hydroxylase. Protein Eng. Des. Sel. 22, 257–266 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Brady, J. P. et al. Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation. Proc. Natl Acad. Sci. USA 114, E8194–E8203 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Yoshizawa, T. et al. Nuclear import receptor inhibits phase separation of FUS through binding to multiple sites. Cell 173, e622 (2018).

    Article  CAS  Google Scholar 

  59. Holehouse, A. S. & Pappu, R. V. Functional implications of intracellular phase transitions. Biochemistry 57, 2415–2423 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Peng, K., Radivojac, P., Vucetic, S., Dunker, A. K. & Obradovic, Z. Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 7, 208 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Tang, N. C. & Chilkoti, A. Combinatorial codon scrambling enables scalable gene synthesis and amplification of repetitive proteins. Nat. Mater. 15, 419–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. McDaniel, J. R., Mackay, J. A., Quiroz, F. G. & Chilkoti, A. Recursive directional ligation by plasmid reconstruction allows rapid and seamless cloning of oligomeric genes. Biomacromolecules 11, 944–952 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Simon, J. R., Carroll, N. J., Rubinstein, M., Chilkoti, A. & Lopez, G. P. Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity. Nat. Chem. 9, 509–515 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hassouneh, W., Zhulina, E. B., Chilkoti, A. & Rubinstein, M. Elastin-like polypeptide diblock copolymers self-assemble into weak micelles. Macromolecules 48, 4183–4195 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fluegel, S., Fischer, K., McDaniel, J. R., Chilkoti, A. & Schmidt, M. Chain stiffness of elastin-like polypeptides. Biomacromolecules 11, 3216–3218 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.C. acknowledges support from the National Institutes of Health (NIH) through an MIRA grant R35GM127042 and from the National Science Foundation (NSF) through a DMREF grant DMR-17-29671. P.S.C acknowledges support from the National Science Foundation through CHE-1709735.

Author information

Authors and Affiliations

Authors

Contributions

M.D. and A.C. designed the experiments and wrote the manuscript. M.D. performed each measurement and analysed the data with the exception of microfluidic temperature-gradient experiments that were performed and analysed by B.A.R. A.S. assisted with UCST cloud-point determination and non-repetitive A-IDP design. P.S.C. assisted in writing the manuscript. All authors discussed the result and commented on the manuscript.

Corresponding author

Correspondence to Ashutosh Chilkoti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Extended Materials and Methods, Supplementary Figs. 1–24 and Tables 1–6.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzuricky, M., Rogers, B.A., Shahid, A. et al. De novo engineering of intracellular condensates using artificial disordered proteins. Nat. Chem. 12, 814–825 (2020). https://doi.org/10.1038/s41557-020-0511-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-0511-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing