Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 1, 2020

Seagrass characterization on the southern Pacific coast of Costa Rica: history, vegetation, and environment

  • Jimena Samper-Villarreal

    Jimena Samper-Villarreal is a researcher at the Center for Research in Marine Science and Limnology (CIMAR) at the University of Costa Rica. Her research focuses on ecology and management of tropical seagrass meadows and mangroves.

    ORCID logo EMAIL logo
    and Jorge Cortés

    Jorge Cortés is a researcher at the Center for Research in Marine Science and Limnology (CIMAR), and Professor at the School of Biology, both at the University of Costa Rica. His research interest is in natural and human impacts of coastal marine ecosystems, invertebrate marine biodiversity, and recently deep-sea environments.

    ORCID logo
From the journal Botanica Marina

Abstract

Seagrass conservation and management requires scientific understanding of spatial and temporal variability, information that is currently limited for the Eastern Tropical Pacific (ETP). Here, we analysed seagrass presence based on previous reports, herbarium collections and stakeholder knowledge, combined with field characterization in Golfo Dulce, southern Pacific coast of Costa Rica. Seagrasses were found at multiple locations along a narrow border close to shore and in up to 6 m depth within Golfo Dulce, dating back to 1969. Two seagrass species were found, Halophila baillonii and Halodule beaudettei. Seagrass biomass values for Golfo Dulce (12.0 ± 8.5 g DW m−2) were lower and water nutrient concentrations were higher than previously reported in the gulf. Shoot density (1513 ± 767 shoots m−2) was similar to previous reports. Stable isotope values in seagrass were −11.3 ± 1.0‰ δ13C and 1.2 ± 0.9‰ δ15N; while those in sediments were −26.1 ± 1.3 and 2.5 ± 0.9‰. In Golfo Dulce, isotopic values of both seagrass species do not overlap with other known primary producers. Management strategies should aim to minimize known seagrass stressors, protect potential seagrass habitat, and take into account the dynamic life strategies of the two seagrass species found.


Corresponding author: Jimena Samper-Villarreal, Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Ciudad de la Investigación, Universidad de Costa Rica, San Pedro, 11501-2060 San José, Costa Rica, E-mail:

About the authors

Jimena Samper-Villarreal

Jimena Samper-Villarreal is a researcher at the Center for Research in Marine Science and Limnology (CIMAR) at the University of Costa Rica. Her research focuses on ecology and management of tropical seagrass meadows and mangroves.

Jorge Cortés

Jorge Cortés is a researcher at the Center for Research in Marine Science and Limnology (CIMAR), and Professor at the School of Biology, both at the University of Costa Rica. His research interest is in natural and human impacts of coastal marine ecosystems, invertebrate marine biodiversity, and recently deep-sea environments.

Acknowledgements

We thank B. van Tussenbroek, J. Kleypas, T. Villalobos, and Memo for their help in the field in 2016, and E. Gómez for POM processing. We also thank M. Marion and D. Chacón from the Latin American Sea Turtle (LAST) Association for support accessing the field in 2018 to sample the three POM water samples.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by Vicerrectoría de Investigación at the University of Costa Rica.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Bessesen, B.L. and Saborío-R, G. (2012). Tropical fiord habitat as a year-round resting, breeding, and feeding ground for East Pacific green sea turtles (Chelonia mydas) off Costa Rica. Herpetol. Rev. 45: 539–541.Search in Google Scholar

CARICOMP, C.C.M.P. (2001). CARICOMP Methods Manual Levels 1 & 2: Methods for Mapping and Monitoring of Physical and Biological Parameters in the Coastal Zone of the Caribbean. Kingston, Jamaica: Centre for Marine Sciences, University of the West Indies.Search in Google Scholar

Castro, K. (2018). Golfo Dulce es declarado santuario del tiburón martillo. San José, Costa Rica: CRHoy. May 4th https://www.crhoy.com/ambiente/golfo-dulce-es-declarado-santuario-del-tiburon-martillo/.Search in Google Scholar

Clarke, K.R. (1993). Non‐parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18: 117–143, https://doi.org/10.1111/j.1442-9993.1993.tb00438.x.Search in Google Scholar

Cortés, J. (1990). The coral reefs of Golfo Dulce, Costa Rica: distribution and community structure. Atoll Res. Bull. 344: 1–37.10.5479/si.00775630.344.1Search in Google Scholar

Cortés, J. (2001). Requiem for an eastern Pacific seagrass bed. Rev. Biol. Trop. 49(Suppl. 2), 273–278.Search in Google Scholar

Cortés-Núñez, J., Breedy-Shadid, O., Sánchez-Noguera, C. and Pacheco-Solano, C. (2012). Los ecosistemas marinos del Refugio de Vida Silvestre La Flor y del Corredor Biológico Paso del Istmo, Rivas, Nicaragua. Proyecto Investigación Marino-Costero: Asegurando las Bases Científicas y Educativas para la Protección y Manejo de Tortugas Marinas en los RVS La Flor y Río Escalante-Chococente, CIMAR, Paso Pacífico, DANIDA, Managua, Nicaragua, p. 52.Search in Google Scholar

Costanzo, S.D., O’Donohue, M., Dennison, W., Loneragan, N. and Thomas, M. (2001). A new approach for detecting and mapping sewage impacts. Mar. Pollut. Bull. 42: 149–156, https://doi.org/10.1016/s0025-326x(00)00125-9.Search in Google Scholar

Dennison, W.C. and Abal, E.G. (1999). Moreton Bay study: A scientific basis for the Healthy Waterways campaign. Brisbane, Australia: South East Qld Regional Water Quality Management Strategy Team, p. 245.Search in Google Scholar

Duarte, C.M. and Chiscano, C.L. (1999). Seagrass biomass and production: a reassessment. Aquat. Bot. 65: 159–174, https://doi.org/10.1016/s0304-3770(99)00038-8.Search in Google Scholar

Duarte, C.M., Losada, I.J., Hendriks, I.E., Mazarrasa, I. and Marbà, N. (2013). The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Change 3: 961–968, https://doi.org/10.1038/nclimate1970.Search in Google Scholar

Fiedler, P.C. and Talley, L.D. (2006). Hydrography of the eastern tropical Pacific: a review. Prog. Oceanogr. 69: 143–180, https://doi.org/10.1016/j.pocean.2006.03.008.Search in Google Scholar

Fourqurean, J.W., Duarte, C.M., Kennedy, H., Marbà, N., Holmer, M., Mateo, M.A., Apostolaki, E.T., Kendrick, G.A., Krause-Jensen, D. and McGlathery, K.J. (2012). Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 5: 505–509, https://doi.org/10.1038/ngeo1477.Search in Google Scholar

Heiri, O., Lotter, A.F. and Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J. Paleolimnol. 25: 101–110, https://doi.org/10.1023/a:1008119611481.10.1023/A:1008119611481Search in Google Scholar

Howard, J., Hoyt, S., Isensee, K., Pidgeon, E. and Telszewski, M. (2014). Coastal Blue Carbon: Methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrasses. Arlington, Virginia, USA: Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature, p. 180.Search in Google Scholar

Kennedy, H., Beggins, J., Duarte, C.M., Fourqurean, J.W., Holmer, M., Marbà, N. and Middelburg, J.J. (2010). Seagrass sediments as a global carbon sink: isotopic constraints. Global Biogeochem. Cycles 24: GB4026, https://doi.org/10.1029/2010gb003848.Search in Google Scholar

Kenworthy, W.J., Wyllie-Echeverria, S., Coles, R.G., Pergent, G. and Pergent-Martini, C. (2006). Seagrass conservation biology: an interdisciplinary science for protection of the seagrass biome. In: Larkum, A., Orth, R. and Duarte, C. (Eds.), Seagrasses: Biology, ecology and conservation. Springer, The Netherlands, pp. 595–623.10.1007/978-1-4020-2983-7_25Search in Google Scholar

Lamb, A.L., Wilson, G.P. and Leng, M.J. (2006). A review of coastal palaeoclimate and relative sea-level reconstructions using d13C and C/N ratios in organic material. Earth Sci. Rev. 75: 29–57, https://doi.org/10.1016/j.earscirev.2005.10.003.Search in Google Scholar

MAG. (2009). Reglamento para el establecimiento de las Áreas Marinas de Pesca Responsable y Declaratoria de Interés Público Nacional de las Áreas Marinas de Pesca Responsable, Presidente de la República y Ministerio de Agricultura y Ganadería. N.35502-MAG. San José, Costa Rica: Ministerio de Agricultura y Ganadería.Search in Google Scholar

Méndez-Salgado, E. (2017). Patrones biológicos de tortuga carey en la Península de Osa mediante la medición de isótopos estables de nitrógeno y carbono, Heredia, Costa Rica. Thesis: Maestría Medicina de la Conservación, Universidad Nacional, p. 128.Search in Google Scholar

Méndez-Salgado, E., Chacón-Chaverri, D., Fonseca, L.G. and Seminoff, J.A. (2020). Trophic ecology of hawksbill turtles (Eretmochelys imbricata) in Golfo Dulce, Costa Rica: integrating esophageal lavage and stable isotope (δ13C, δ15N) analysis. Lat. Am. J. Aquat. Res. 48: 114–130, https://doi.org/10.3856/vol48-issue1-fulltext-2230.Search in Google Scholar

Morales-Ramírez, Á., Acuña-González, J., Lizano, O., Alfaro, E. and Gómez, E. (2015). Rasgos oceanográficos en el Golfo Dulce, Pacífico de Costa Rica: una revisión para la toma de decisiones en conservación marina. Rev. Biol. Trop. 63(Suppl. 1) :131–160. http://dx.doi.org/10.15517/rbt.v63i1.23100.10.15517/rbt.v63i1.23100Search in Google Scholar

Nordlund, L.M., Jackson, E.L., Nakaoka, M., Samper-Villarreal, J., Beca-Carretero, P. and Creed, J.C. (2018). Seagrass ecosystem services – what’s next?. Mar. Pollut. Bull. 134: 145–151, https://doi.org/10.1016/j.marpolbul.2017.09.014.Search in Google Scholar

O’Brien, K.R., Adams, M.P., Ferguson, A.J., Samper-Villarreal, J., Maxwell, P.S., Baird, M.E. and Collier, C. (2018a). Seagrass resistance to light deprivation: implications for resilience. In: Larkum, A.W.D., Kendrick, G.A. and Ralph, P.J. (Eds.), Seagrasses of Australia. Springer, The Netherlands, pp. 287–311.10.1007/978-3-319-71354-0_10Search in Google Scholar

O’Brien, K.R., Waycott, M., Maxwell, P., Kendrick, G.A., Udy, J.W., Ferguson, A.J., Kilminster, K., Scanes, P., McKenzie, L.J., McMohon, K., et al. (2018b). Seagrass ecosystem trajectory depends on the relative timescales of resistance, recovery and disturbance. Mar. Pollut. Bull. 134: 166–176, https://doi.org/10.1016/j.marpolbul.2017.09.006.Search in Google Scholar

Orth, R.J., Carruthers, T.J.B., Dennison, W.C., Duarte, C.M., Fourqurean, J.W., Heck, K.L.Jr, Hughes, A.R., Kendrick, G.A., Kenworthy, W.J. and Olyarnik, S. (2006). A global crisis for seagrass ecosystems. Bioscience 56: 987–996, https://doi.org/10.1641/0006-3568(2006)56[987:agcfse]2.0.co;2.10.1641/0006-3568(2006)56[987:AGCFSE]2.0.CO;2Search in Google Scholar

Phillips, R. (1967). On species of the seagrass, Halodule, in Florida. Bull. Mar. Sci. 17: 672–676.Search in Google Scholar

Phillips, R. and Menez, E. (1988). Seagrasses. Smithsonian Contribution to the Marine Sciences, Number 34. Washington, DC: Smithsonian Institute Press.Search in Google Scholar

Proyecto, Golfos (2012). Plan de ordenamiento espacial marino del Área Marina de Uso Múltiple Pacífico Sur. San José, Costa Rica: MarViva-SINAC, p. 159.Search in Google Scholar

R Development Core Team (2012). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Search in Google Scholar

Ramírez, E., Menjívar, J., Cerén, G., Rivera, A., Henríquez, A.V. and Liles, M.J. (2017). Shoalgrass Halodule wrightii (Ascherson, 1868) meadows in El Salvador: distribution and associated invertebrates at the estuary complex of Bahía de Jiquilisco. Lat. Am. J. Aquat. Res. 45: 864–869, https://doi.org/10.3856/vol45-issue4-fulltext-26.Search in Google Scholar

Ramírez-García, P., Terrados, J., Ramos, F., Lot, A., Ocaña, D. and Duarte, C.M. (2002). Distribution and nutrient limitation of surfgrass, Phyllospadix scouleri and Phyllospadix torreyi, along the Pacific coast of Baja California (Mexico). Aquat. Bot. 74: 121–131.10.1016/S0304-3770(02)00050-5Search in Google Scholar

Reef, R., Atwood, T.B., Samper‐Villarreal, J., Adame, M.F., Sampayo, E.M. and Lovelock, C.E. (2017). Using eDNA to determine the source of organic carbon in seagrass meadows. Limnol. Oceanogr. 62: 1254–1265, https://doi.org/10.1002/lno.10499.Search in Google Scholar

Rodelli, M., Gearing, J., Gearing, P., Marshall, N. and Sasekumar, A. (1984). Stable isotope ratio as a tracer of mangrove carbon in Malaysian ecosystems. Oecologia 61: 326–333, https://doi.org/10.1007/bf00379629.Search in Google Scholar

Samper-Villarreal, J., Bourg, A., Sibaja-Cordero, J.A. and Cortés, J. (2014). Presence of a Halophila baillonii Asch. (Hydrocharitaceae) seagrass meadow and associated macrofauna on the Pacific Coast of Costa Rica. Pac. Sci. 68: 435–444, https://doi.org/10.2984/68.3.10.Search in Google Scholar

Samper-Villarreal, J., Cambronero Bolaños, R., Heidemeyer, M., Mora Vargas, M. and Mora Vargas, R. (2020). Characterization of seagrasses at two new locations in the Eastern Tropical Pacific (El Jobo and Matapalito, Costa Rica). Aquat. Bot. 165: 103237, https://doi.org/10.1016/j.aquabot.2020.103237.Search in Google Scholar

Samper-Villarreal, J., Cortés, J. and Polunin, N.V. (2018a). Isotopic evidence of subtle nutrient enrichment in mangrove habitats of Golfo Dulce, Costa Rica. Hydrol. Process. 32: 1956–1964, https://doi.org/10.1002/hyp.13133.Search in Google Scholar

Samper-Villarreal, J., Lovelock, C.E., Saunders, M.I., Roelfsema, C. and Mumby, P.J. (2016). Organic carbon in seagrass sediments is influenced by seagrass canopy complexity, turbidity, wave height, and water depth. Limnol. Oceanogr. 61: 938–952, https://doi.org/10.1002/lno.10262.Search in Google Scholar

Samper-Villarreal, J., Mumby, P.J., Saunders, M.I., Barry, L., Zawadzki, A., Heijnis, H. and Lovelock, C.E. (2018b). Vertical accretion and carbon burial rates in subtropical seagrass meadows increased following anthropogenic pressure from European colonisation. Estuar. Coast Shelf Sci. 202: 40–53, https://doi.org/10.1016/j.ecss.2017.12.006.Search in Google Scholar

Samper-Villarreal, J., Rojas-Ortega, G., Luis, V.-A.J. and Cortés, J. (2018c). New sighting of seagrasses in the Eastern Tropical Pacific (Bahía Potrero, Costa Rica). Aquat. Bot. 151: 25–29, https://doi.org/10.1016/j.aquabot.2018.07.010.Search in Google Scholar

Samper-Villarreal, J., Van Tussenbroek, B.I. and Cortés, J. (2018d). Seagrasses of Costa Rica: from the mighty Caribbean to the dynamic meadows of the Eastern Tropical Pacific. Rev. Biol. Trop. 66: S53–S65, https://doi.org/10.15517/rbt.v66i1.33260.Search in Google Scholar

Sarmento de Carvalho, M (2013). Análisis descriptivo de las condiciones ambientales y estado de salud de la Tortuga Negra (Chelonia mydas agassizii) en un sitio de forrajeo en el Golfo Dulce, Costa Rica. Heredia, Costa Rica. Thesis: Maestría en Conservación y Manejo de Vida Silvestre. Universidad Nacional, p. 105.Search in Google Scholar

Serrano, O., Lavery, P.S., Duarte, C.M., Kendrick, G.A., Calafat, A., York, P.H. and Macreadie, P.I. (2016). Can mud (silt and clay) concentration be used to predict soil organic carbon content within seagrass ecosystems?. Biogeosciences 13: 4915, https://doi.org/10.5194/bg-13-4915-2016.Search in Google Scholar

Short, F., Carruthers, T., Dennison, W. and Waycott, M. (2007). Global seagrass distribution and diversity: a bioregional model. J. Exp. Mar. Biol. Ecol. 350: 3–20, https://doi.org/10.1016/j.jembe.2007.06.012.Search in Google Scholar

SINAC (2019). Maps of protected areas. Sistema Nacional de Áreas de Conservación, Área de Conservación Osa. Accessed January 21 2019. http://www.sinac.go.cr/EN-US/ac/acosa/Pages/maps.aspx.Search in Google Scholar

Strickland, J.D. and Parsons, T.R. (1972). A practical handbook of seawater analysis. Ottawa, Canada: Fisheries Research Board of Canada, p. 310.Search in Google Scholar

Valentine, J.F. and Duffy, J.E. (2006). The central role of grazing in seagrass ecology. In: Larkum, A., Orth, R. and Duarte, C. (Eds.), Seagrasses: Biology, ecology and conservation. Springer, The Netherlands, pp. 463–501.10.1007/978-1-4020-2983-7_20Search in Google Scholar

Van Tussenbroek, B., Santos, M.G.B., Wong, J.G.R., Van Dijk, J.K. and Waycott, M. (2010). A Guide to the Tropical Seagrasses of the Western Atlantic. México D.F.: Universidad Nacional Autónoma de México.Search in Google Scholar

Waycott, M., Duarte, C.M., Carruthers, T.J.B., Orth, R.J., Dennison, W.C., Olyarnik, S., Calladine, A., Fourqurean, J.W., Heck, K.L. and Hughes, A.R. (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. U.S.A. 106: 12377–12381, https://doi.org/10.1073/pnas.0905620106.Search in Google Scholar

Received: 2020-04-08
Accepted: 2020-07-07
Published Online: 2020-08-01
Published in Print: 2020-10-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/bot-2020-0022/html
Scroll to top button