Skip to main content
Log in

Strong approximation of monotone stochastic partial differential equations driven by multiplicative noise

  • Published:
Stochastics and Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

We establish a general theory of optimal strong error estimation for numerical approximations of a second-order parabolic stochastic partial differential equation with monotone drift driven by a multiplicative infinite-dimensional Wiener process. The equation is spatially discretized by Galerkin methods and temporally discretized by drift-implicit Euler and Milstein schemes. By the monotone and Lyapunov assumptions, we use both the variational and semigroup approaches to derive a spatial Sobolev regularity under the \(L_\omega ^p L_t^\infty \dot{H}^{1+\gamma }\)-norm and a temporal Hölder regularity under the \(L_\omega ^p L_x^2\)-norm for the solution of the proposed equation with an \(\dot{H}^{1+\gamma }\)-valued initial datum for \(\gamma \in [0,1]\). Then we make full use of the monotonicity of the equation and tools from stochastic calculus to derive the sharp strong convergence rates \({\mathscr {O}}(h^{1+\gamma }+\tau ^{1/2})\) and \({\mathscr {O}}(h^{1+\gamma }+\tau ^{(1+\gamma )/2})\) for the Galerkin-based Euler and Milstein schemes, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayer, C., Friz, P., Riedel, S., Schoenmakers, J.: From rough path estimates to multilevel Monte Carlo. SIAM J. Numer. Anal. 54(3), 1449–1483 (2016)

    Article  MathSciNet  Google Scholar 

  2. Becker, S., Gess, B., Jentzen, A., Kloeden, P.: Strong convergence rates for explicit space-time discrete numerical approximations of stochastic Allen–Cahn equations arXiv:1711.02423

  3. Becker, S., Jentzen, A.: Strong convergence rates for nonlinearity-truncated Euler-type approximations of stochastic Ginzburg–Landau equations. Stoch. Process. Appl. 129(1), 28–69 (2019)

    Article  MathSciNet  Google Scholar 

  4. Bréhier, C.-E., Cui, J., Hong, J.: Strong convergence rates of semidiscrete splitting approximations for the stochastic Allen–Cahn equation. IMA J. Numer. Anal. 39(4), 2096–2134 (2019)

    Article  MathSciNet  Google Scholar 

  5. Cao, Y., Hong, J., Liu, Z.: Approximating stochastic evolution equations with additive white and rough noises. SIAM J. Numer. Anal. 55(4), 1958–1981 (2017)

    Article  MathSciNet  Google Scholar 

  6. Cui, J., Hong, J.: Strong and weak convergence rates of a spatial approximation for stochastic partial differential equation with one-sided Lipschitz coefficient. SIAM J. Numer. Anal. 57(4), 1815–1841 (2019)

    Article  MathSciNet  Google Scholar 

  7. Cui, J., Hong, J., Liu, Z.: Strong convergence rate of finite difference approximations for stochastic cubic Schrödinger equations. J. Differ. Equ. 263, 3687–3713 (2017)

    Article  Google Scholar 

  8. Cui, J., Hong, J., Liu, Z., Zhou, W.: Strong convergence rate of splitting schemes for stochastic nonlinear Schrödinger equations. J. Differ. Equ. 266(9), 5625–5663 (2019)

    Article  Google Scholar 

  9. Dörsek, P.: Semigroup splitting and cubature approximations for the stochastic Navier–Stokes equations. SIAM J. Numer. Anal. 50(2), 729–746 (2012)

    Article  MathSciNet  Google Scholar 

  10. Feng, X., Li, Y., Zhang, Y.: Finite element methods for the stochastic Allen–Cahn equation with gradient-type multiplicative noises. SIAM J. Numer. Anal. 55(1), 194–216 (2017)

    Article  MathSciNet  Google Scholar 

  11. Gyöngy, I., Millet, A.: Rate of convergence of space time approximations for stochastic evolution equations. Potential Anal. 30(1), 29–64 (2009)

    Article  MathSciNet  Google Scholar 

  12. Higham, D., Mao, X., Stuart, A.: Strong convergence of Euler-type methods for nonlinear stochastic differential equation. SIAM J. Numer. Anal. 40(3), 1041–1063 (2002)

    Article  MathSciNet  Google Scholar 

  13. Hong, J., Huang, C., Liu, Z.: Optimal regularity of stochastic evolution equations in M-type 2 Banach spaces. J. Differ. Equ. 267(3), 1955–1971 (2019)

    Article  MathSciNet  Google Scholar 

  14. Hong, J., Liu, Z.: Well-posedness and optimal regularity of stochastic evolution equations with multiplicative noises. J. Differ. Equ. 266(8), 4712–4745 (2019)

    Article  MathSciNet  Google Scholar 

  15. Hutzenthaler, M., Jentzen, A.: On a perturbation theory and on strong convergence rates for stochastic ordinary and partial differential equations with non-globally monotone coefficients. Ann. Probab. (arXiv:1401.0295)

  16. Hutzenthaler, M., Jentzen, A.: Convergence of the stochastic Euler scheme for locally Lipschitz coefficients. Found. Comput. Math. 11(6), 657–706 (2011)

    Article  MathSciNet  Google Scholar 

  17. Jentzen, A., Röckner, M.: A Milstein scheme for SPDEs. Found. Comput. Math. 15(2), 313–362 (2015)

    Article  MathSciNet  Google Scholar 

  18. Kovács, M., Larsson, S., Lindgren, F.: On the backward Euler approximation of the stochastic Allen–Cahn equation. J. Appl. Probab. 52(2), 323–338 (2015)

    Article  MathSciNet  Google Scholar 

  19. Kovács, M., Larsson, S., Lindgren, F.: On the discretisation in time of the stochastic Allen–Cahn equation. Math. Nachr. 291(5–6), 966–995 (2018)

    Article  MathSciNet  Google Scholar 

  20. Kruse, R.: Consistency and stability of a Milstein–Galerkin finite element scheme for semilinear SPDE. Stoch. Partial Differ. Equ. Anal. Comput. 2(4), 471–516 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Kruse, R.: Optimal error estimates of Galerkin finite element methods for stochastic partial differential equations with multiplicative noise. IMA J. Numer. Anal. 34(1), 217–251 (2014)

    Article  MathSciNet  Google Scholar 

  22. Krylov, N.: A \(W^n_2\)-theory of the Dirichlet problem for SPDEs in general smooth domains. Probab. Theory Relat. Fields 98(3), 389–421 (1994)

    Article  Google Scholar 

  23. Liu, J.: Order of convergence of splitting schemes for both deterministic and stochastic nonlinear Schrödinger equations. SIAM J. Numer. Anal. 51(4), 1911–1932 (2013)

    Article  MathSciNet  Google Scholar 

  24. Liu, W.: Well-posedness of stochastic partial differential equations with Lyapunov condition. J. Differ. Equ. 255(3), 572–592 (2013)

    Article  MathSciNet  Google Scholar 

  25. Liu, W., Röckner, M.: Stochastic Partial Differential Equations: An Introduction. Universitext, Springer, Cham (2015)

    Book  Google Scholar 

  26. Liu, Z., Qiao, Z.: Wong–Zakai approximation of stochastic Allen–Cahn equation. Int. J. Numer. Anal. Model. 16(5), 681–694 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Liu, Z., Qiao, Z.: Strong approximation of stochastic Allen-Cahn equation with white noise. IMA J. Numer. Anal. 40(2), 1074–1093 (2020)

    Article  MathSciNet  Google Scholar 

  28. Majee, A., Prohl, A.: Optimal strong rates of convergence for a space-time discretization of the stochastic Allen-Cahn equation with multiplicative noise. Comput. Methods Appl. Math. 18(2), 297–311 (2018)

    Article  MathSciNet  Google Scholar 

  29. Marinelli, C., Röckner, M.: On the maximal inequalities of Burkholder, Davis and Gundy. Expo. Math. 34(1), 1–26 (2016)

    Article  MathSciNet  Google Scholar 

  30. Müller-Gronbach, T., Ritter, K.: Lower bounds and nonuniform time discretization for approximation of stochastic heat equations. Found. Comput. Math. 7(2), 135–181 (2007)

    Article  MathSciNet  Google Scholar 

  31. Neelima, Šiška, D.: \(l^p\)-estimates and regularity for SPDEs with monotone semilinearity. Stoch. Partial Differ. Equ. Anal. Comput. 8(2), 422–459 (2020)

  32. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44. Springer, New York (1983)

    MATH  Google Scholar 

  33. Prohl, A.: Strong rates of convergence for a space-time discretization of the stochastic Allen–Cahn equation with multiplicative noise (2014, preprint). https://na.uni-tuebingen.de/preprints

  34. Qi, R., Wang, X.: Optimal error estimates of Galerkin finite element methods for stochastic Allen–Cahn equation with additive noise. J. Sci. Comput. 80(2), 1171–1194 (2019)

    Article  MathSciNet  Google Scholar 

  35. Wang, X.: An efficient explicit full discrete scheme for strong approximation of stochastic Allen–Cahn equation. arXiv:1802.09413

Download references

Acknowledgements

We thank the anonymous referee for very helpful remarks and suggestions. The first author is partially supported by Hong Kong RGC General Research Fund, No. 16307319, and the UGC Research Infrastructure Grant, No. IRS20SC39. The second author is partially supported by Hong Kong RGC General Research Fund, No. 15325816, and the Hong Kong Polytechnic University Start-up Fund for New Recruits, No. 1-ZE33.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghua Qiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Qiao, Z. Strong approximation of monotone stochastic partial differential equations driven by multiplicative noise. Stoch PDE: Anal Comp 9, 559–602 (2021). https://doi.org/10.1007/s40072-020-00179-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-020-00179-2

Keywords

Mathematics Subject Classification

Navigation