Skip to main content
Log in

A composite of imprinted polypyrrole beads and reduced graphene oxide for specific electrochemical sensing of atrazine in complex matrices

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Atrazine-imprinted reduced graphene oxide composite with its enhanced functionalities and porous surface was successfully synthesized and applied for the selective determination of atrazine in complex matrices. Scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction studies revealed the imprinted polypyrrole beads formation on the reduced graphene oxide lining. Resultant composite was used to modify screen-printed electrode which then showed improved properties for voltammetric determination of atrazine. Measurements were carried out via square wave voltammetry giving a peak at − 0.9 V corresponding to the reduction of atrazine heterocyclic moiety. Obtained LOD and LOQ for atrazine were found to be 0.4 nmol/dm3 and 1.2 nmol/dm3, respectively, at optimized parameters. The method was applied for the atrazine determination in complex aqueous matrices.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Turner AP (2013) Chem Soc Rev 42:3184

    Article  CAS  PubMed  Google Scholar 

  2. Uzun L, Turner AP (2016) Biosens Bioelectron 76:131

    Article  CAS  PubMed  Google Scholar 

  3. Zbeda S, Pokpas K, Titinchi SJ, Jahed N, Baker P, Iwuoha EI (2013) Int J Electrochem Sci 8:11125

    CAS  Google Scholar 

  4. Thema F, Moloto M, Dikio E, Nyangiwe N, Kotsedi L, Maaza M, Khenfouch M (2013) J Chem 2013:1

    Article  Google Scholar 

  5. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Electroanalysis 22:1027

    Article  CAS  Google Scholar 

  6. Zeng Y, Zhou Y, Kong L, Zhou T, Shi G (2013) Biosens Bioelectron 45:25

    Article  CAS  PubMed  Google Scholar 

  7. Zhao L, Zhao F, Zeng B (2013) Sens Actuators B 176:818

    Article  CAS  Google Scholar 

  8. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Prog Polym Sci 35:1350

    Article  CAS  Google Scholar 

  9. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Nature 442:282

    Article  CAS  PubMed  Google Scholar 

  10. Wang X, Hu Y, Song L, Yang H, Xing W, Lu H (2011) J Mater Chem 21:4222

    Article  CAS  Google Scholar 

  11. McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud'homme RK (2007) Chem Mater 19:4396

    Article  CAS  Google Scholar 

  12. Verdejo R, Bernal MM, Romasanta LJ, Lopez-Manchado MA (2011) J Mater Chem 21:3301

    Article  CAS  Google Scholar 

  13. Niu X, Yang W, Ren J, Guo H, Long S, Chen J, Gao J (2012) Electrochim Acta 80:346

    Article  CAS  Google Scholar 

  14. Bellayer S, Gilman JW, Eidelman N, Bourbigot S, Flambard X, Fox DM, De Long HC, Trulove PC (2005) Adv Funct Mater 15:910

    Article  CAS  Google Scholar 

  15. Yu P, Lin Y, Xiang L, Su L, Zhang J, Mao L (2005) Langmuir 21:9000

    Article  CAS  PubMed  Google Scholar 

  16. Shahriary L, Athawale AA (2014) Energy Environ Eng 2:58

    Google Scholar 

  17. Amarnath CA, Hong CE, Kim NH, Ku BC, Kuila T, Lee JH (2011) Carbon 49:3497

    Article  CAS  Google Scholar 

  18. Thakur S, Karak N (2012) Carbon 50:5331

    Article  CAS  Google Scholar 

  19. Wang X, Yang C, Li H, Liu P (2013) Electrochim Acta 111:729

    Article  CAS  Google Scholar 

  20. Heimer NE, Del Sesto RE, Meng Z, Wilkes JS, Carper WR (2006) J Mol Liq 124:84

    Article  CAS  Google Scholar 

  21. Kudin KN, Ozbas B, Schniepp HC, Prud'homme RK, Aksay IA, Car R (2008) Nano Lett 8:36

    Article  CAS  PubMed  Google Scholar 

  22. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun'Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) Nat Nanotechnol 3:563

    Article  CAS  PubMed  Google Scholar 

  23. Paredes JI, Rodil SV, Alonso AM, Tascon JMD (2008) Langmuir 24:10560

    Article  CAS  PubMed  Google Scholar 

  24. Zhang C, Li F, Wang SX, Liu ZS, Aisa HA (2015) Anal Methods 7:10256

    Article  CAS  Google Scholar 

  25. Massaroppi MRC, Machado SAS, Avaca LA (2003) J Braz Chem Soc 14:113

    Article  CAS  Google Scholar 

  26. Luo J, Gao Y, Tan K, Wei W, Liu X (2016) ACS Sustain Chem Eng 4:3316

    Article  CAS  Google Scholar 

  27. Ignajatovic MT, Markovic DA, Veselinovic DS, Besic BR (1993) Electroanalysis 5:529

    Article  Google Scholar 

  28. Higuera MJ, Ruiz Montoya MR, Marın Galvın R, Rodriguez Mellado JM (1999) J Electroanal Chem 474:174

    Article  CAS  Google Scholar 

  29. Pospíšil L, Trsková R, Fuoco R, Colombini M (1995) J Electroanal Chem 395:189

    Article  Google Scholar 

  30. De Souza D, de Toledo RA, Suffredini HB, Mazo LH, Machado SA (2006) Electroanalysis 18:605

    Article  Google Scholar 

  31. Bard AJ (1983) J Chem Educ 60:302

    Article  CAS  Google Scholar 

  32. de Oliveira UM, Lichtig J, Masini JC (2004) J Braz Chem Soc 15:735

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Grant Agency of the Czech Republic (project GACR 20-01589S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiri Barek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, S., Shaikh, H., Solangi, A. et al. A composite of imprinted polypyrrole beads and reduced graphene oxide for specific electrochemical sensing of atrazine in complex matrices. Monatsh Chem 151, 1271–1282 (2020). https://doi.org/10.1007/s00706-020-02593-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-020-02593-7

Keywords

Navigation