Skip to main content
Log in

Fast UHPLC enantioseparation of liquid crystalline materials with chiral center based on octanol in reversed-phase and polar organic mode

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Fast baseline enantioseparation of twenty racemic liquid crystalline compounds was carried out via ultra-performance liquid chromatography through direct enantioseparation in polar organic and reversed-phase modes. Tris(3-chloro-5-methyl-phenylcarbamate) derivative of amylose was used as chiral stationary phase; the chiral selector was covalently immobilized on sub-2 µm silica particles. Experiments were done using either pure acetonitrile as mobile phase or simple binary mobile phases consisting of acetonitrile/water mixtures in different volume ratios. No buffers or additives were used. Studied materials are a set of structurally similar compounds comprising two different structures of chiral center, various length of alkoxy spacer and four patterns of lateral substitution of aromatic core by fluorine. The compounds do not contain any ionizable group. The effect of the enantiomer structure on the retention and enantioseparation was evaluated. Flow rate and column temperature were optimized as part of method development.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4 
Fig. 5

Similar content being viewed by others

References

  1. Goodby JW, Collings PJ, Kato T, Tschierske C, Gleeson H, Raynes P, Vill V (2014) Handbook of liquid crystals. Wiley, Hoboken

    Book  Google Scholar 

  2. Żurowska M, Dąbrowski R, Dziaduszek J, Rejmer W, Czupryński K, Raszewski Z, Piecek W (2010) Mol Cryst Liq Cryst 525:219

    Article  Google Scholar 

  3. Sasaki Y, Aihara K, Isobe M, Ema K (2011) Mol Cryst Liq Cryst 546:209

    Article  CAS  Google Scholar 

  4. Vojtylová T, Kašpar M, Hamplová V, Novotná V, Sýkora D (2014) Phase Transit 87:758

    Article  Google Scholar 

  5. Vojtylová T, Żurowska M, Milewska K, Hamplová V, Sýkora D (2016) Liq Cryst 43:1244

    Article  Google Scholar 

  6. Vojtylová TJ, Cigl M, Tomášková P, Hamplová V, Sýkora D (2018) J Sep Sci 41:3034

    Article  Google Scholar 

  7. Vojtylová T, Niezgoda I, Galewski Z, Hamplová V, Sýkora D (2015) J Sep Sci 38:4211

    Article  Google Scholar 

  8. Vojtylová T, Hamplová V, Galewski Z, Korbecka I, Sýkora D (2017) J Sep Sci 40:1465

    Article  Google Scholar 

  9. Duda Ł, Czajkowski M, Potaniec B, Vaňkátová P (2019) Liq Cryst 46:1769

    Article  CAS  Google Scholar 

  10. Poryvai A, Vojtylová-Jurkovičová T, Šmahel M, Kolderová N, Tomášková P, Sýkora D, Kohout M (2019) Molecules 24:1099

    Article  CAS  Google Scholar 

  11. Vaňkátová P, Kubíčková A, Cigl M, Kalíková K (2019) J Supercrit Fluids 146:217

    Article  Google Scholar 

  12. Vaňkátová P, Kalíková K, Kubíčková A (2018) Anal Chim Acta 1038:191

    Article  Google Scholar 

  13. Urbańska M, Vaňkátová P, Kubíčková A, Kalíková K (2020) Liq Cryst. https://doi.org/10.1080/02678292.2020.1733684

    Article  Google Scholar 

  14. Vaňkátová P, Folprechtová D, Kalíková K, Kubíčková A, Armstrong DW, Tesařová E (2020) J Chromatogr A. https://doi.org/10.1016/j.chroma.2020.461138

    Article  PubMed  Google Scholar 

  15. Scriba GK (2016) J Chromatogr A 1467:56

    Article  CAS  Google Scholar 

  16. Chankvetadze B (2020) TrAC Trends Anal Chem 122:115709

    Article  CAS  Google Scholar 

  17. Kalíková K, Martínková M, Schmid MG, Tesařová E (2018) J Sep Sci 41:1471

    Article  Google Scholar 

  18. Čižmáriková R, Némethy A, Habala L, Račanská E, Valentová J, Hroboňová K (2018) Monatsh Chem 149:969

    Article  Google Scholar 

  19. Padró JM, Keunchkarian S (2018) Microchem J 140:142

    Article  Google Scholar 

  20. Kalíková K, Geryk R, Vozka J, Tesařová E (2015) J Sep Sci 38:711

    Article  Google Scholar 

  21. Swartz ME, Murphy BJ (2004) Lab Plus Int 18:6

    Google Scholar 

  22. Żurowska M, Filipowicz M, Czerwiński M, Szala M (2019) Liq Cryst 46:299

    Article  Google Scholar 

  23. Żurowska M, Dąbrowski R, Dziaduszek J, Garbat K, Filipowicz M, Tykarska M, Rejmer W, Czupryński K, Spadło A, Bennis N, Oton JM (2011) J Mater Chem 21:2144

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from Czech Science Foundation [Project No. CSF 20-19655S], Charles University [Project No. SVV260560] and Operational Programme Research, Development and Education financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports [Project No. SOLID21-CZ.02.1.01/0.0/0.0/16_019/0000760].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Kubíčková.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 343 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaňkátová, P., Šrolerová, T., Kubíčková, A. et al. Fast UHPLC enantioseparation of liquid crystalline materials with chiral center based on octanol in reversed-phase and polar organic mode. Monatsh Chem 151, 1235–1240 (2020). https://doi.org/10.1007/s00706-020-02622-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-020-02622-5

Keywords

Navigation