Skip to main content
Log in

Effect of Heat Treatment of a Melt on the Structure and Properties of the Corresponding Crystalline Ingots or Castings

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The modern concepts of the structure of liquid metals and alloys are considered. Several types of microinhomogeneity and microheterogeneity are shown to exist in liquid metal solutions. Their structural state changes as a result of variations in composition, history, temperature, and pressure or the influence of various external actions. Upon subsequent cooling at an appropriate rate, these changes can persist up to liquidus and affect the structure and properties of the solidified alloy. The main attention is paid to the influence of the heating temperature of a liquid metal. For aluminum-based alloys, the possibility of developing the optimum heat-treatment conditions for melting using the results of studying the structure and properties of melts has been shown. This optimized heat treatment of melts is shown to be an effective method to improve the quality of alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.

Similar content being viewed by others

REFERENCES

  1. B. A. Baum, G. A. Khasin, and G. V. Tyagunov, Liquid Steel (Metallurgiya, Moscow, 1984).

    Google Scholar 

  2. G. V. Tyagunov, E. E. Baryshev, V. S. Tsepelev, et al., Metallic Liquids. Steels and Alloys (UrFU, Yekaterinburg, 2016).

  3. I. G. Brodova, P. S. Popel, and G. I. Eskin, Liquid Metal Processing: Application to Aluminium Alloy Production (Taylor & Francis, London, 2001).

    Book  Google Scholar 

  4. V. Manov, P. Popel, E. Brook-Levinson, et al., “Influence of the thermal treatment of melt on the properties of amorphous materials: ribbons, bulks and glass coated microwires,” Mater. Sci. Eng. A A304–306, 3–54 (2001).

  5. A. C. Mitus and A. Z. Patashinsky, “A statistical description of local structure of condensed matter,” Physica A 150, 383–391 (1988).

    Article  Google Scholar 

  6. A. Z. Patashinsky and B. I. Shumilo, “Theory of condensed matter based on the hypothesis of local crystalline order,” Zh. Eksp. Teor. Fiz. 89 (1), 315–328 (1985).

    Google Scholar 

  7. L. D. Son, “Statistical models of structure and transitions in liquid,” Doctoral Dissertation in Mathematics and Physics (Yekaterinburg, 2007).

  8. A. C. Mitus and A. Z. Patashinsky, “Cluster model of melting and premelting of metals,” Sov. Phys. JETP 53, 798–801 (1981).

    Google Scholar 

  9. A. C. Mitus and A. Z. Patashinsky, “The theory of crystal ordering,” Phys. Lett. A 87, 179–182 (1982).

    Article  Google Scholar 

  10. V. E. Sidorov, L. D. Son, G. M. Rusakov, and B. A. Baum, “The peculiarities in crystallization of iron containing 2.0 wt % of carbon,” High Temp. Mater. Proc. 14 (4), 263–271 (1995).

    Article  CAS  Google Scholar 

  11. G. M. Rusakov, L. D. Son, L. I. Leont’ev, and K. Yu. Shunyaev, “Liquids–liquids structural transition in a system with an impurity,” Dokl. Akad. Nauk 411 (4), 467–471 (2006).

    Google Scholar 

  12. O. I. Ostrovskii, V. A. Grigoryan, and A. F. Vishkarev, Properties of Metallic Melts (Metallurgiya, Moscow, 1988).

    Google Scholar 

  13. V. E. Sidorov, V. S. Gushchin, and B. A. Baum, “Magnetic structure of iron containing oxygen,” Phys. Status Solidi A 85, 497–501 (1984).

    Article  CAS  Google Scholar 

  14. E. A. Klimenkov, P. V. Gel’d, B. A. Baum, and Ju. A. Bazin, “On the short range in liquid iron, cobalt and nickel,” Dokl. Akad. Nauk SSSR 230, 71 (1977).

    Google Scholar 

  15. L. D. Son and V. E. Sidorov, “Polymerization in glass-forming melts,” Izv. Akad. Nauk, Ser. Fiz. 65 (10), 1402 (2001).

    CAS  Google Scholar 

  16. R. Kumar and C. S. Sivaramakrishnan, “Stability of liquid Pb–Cd systems,” J. Mater. Sci. 5 (4), 377–382 (1969).

    Article  Google Scholar 

  17. I. V. Gavrilin, “Sedimentational experiment for studying liquid alloys,” Izv. Akad. Nauk SSSR, Ser. Met., No. 2, 66–73 (1985).

  18. P. S. Popel, O. A. Chikova, and V. M. Matveev, “Metastable colloidal states of liquid metallic solutions,” High. Temp. Mater. Proc. 4 (4), 219–233 (1995).

    Article  Google Scholar 

  19. P. S. Popel and V. E. Sidorov, “Microheterogeneity of liquid metallic solutions and its influence on the structure and properties of rapidly quenched alloys,” Mater. Sci. Eng. A 226–228, 237–244 (1997).

  20. B. P. Gol’tyakov, P. S. Popel’, V. Ya. Prokhorenko, and V. E. Sidorov, “Magnetic effects confirming metastable microheterogeneity of Au–Co melts,” Rasplavy 2, (6), 83–86 (1988).

    Google Scholar 

  21. P. S. Popel’, V. P. Manov, and A. B. Manukhin, “Influence of the state of melt on the structure of Sn–Pb films after solidification,” Dokl. Akad. Nauk SSSR 281 (1), 107–109 (1985).

    Google Scholar 

  22. U. Dahlborg, M. Calvo-Dahlborg, P. S. Popel’, and V. E. Sidorov, “Structure and properties of some glass-forming liquid alloys,” Eur. Phys. J. B 14, 639–648 (2000).

    Article  CAS  Google Scholar 

  23. V. V. Makeev and P. S. Popel’, “Volume characteristics of Ni–B alloys in the range from 1100 to 2170 K,” Zh. Fiz. Khim. 64, 568–572 (1990).

    CAS  Google Scholar 

  24. U. Dahlborg, J.-G. Gasser, G. J. Cuello, S. Mehraban, N. Lavery, and M. Calvo-Dahlborg, “Temperature and time dependent structure of the molten Ni81P19 alloy by neutron diffraction,” J. Non-Cryst Solids 500, 359–365 (2018).

    Article  CAS  Google Scholar 

  25. S. N. Kuzin and P. S. Popel, “Gas bubbles in melts and their role in metal porosity formation,” in Proceedings of 5th Conference on Heredity in Cast Alloys (SamGTU, Samara, 1993), pp. 116–119.

  26. V. M. Matveev, P. S. Popel’, and O. A. Chikova, “Influence of Mg, Gd, Zn, Cd, Zr, Sc, B, Ti, and Mn additions on the thermal stability of the microheterogeneous state of the Al–5.4 at % Sn melts,” Rasplavy, No. 2, 82–86 (1995).

    Google Scholar 

  27. P. S. Popel, V. I. Nikitin, I. G. Brodova, et al., “Influence of the structural state of melt on the solidification of silumins,” Rasplavy 1 (3), 31–35 (1987).

    CAS  Google Scholar 

  28. P. S. Popel’, O. A. Korzhavina, I. G. Brodova, et al., “Viscosity and electrical resistivity of the Al–Si melts and the influence of their structural state on the structure of cast metal,” Rasplavy, No. 1, 10–17 (1991).

    Google Scholar 

  29. N. Yu. Konstantinova, P. S. Popel’, and D. A. Yagodin, “Kinematic viscosity of liquid copper–aluminum alloys,” TVT 47 (3), 354–359 (2009).

    Google Scholar 

  30. A. R. Kurochkin, P. S. Popel’, A. V. Borisenko, and D. A. Yagodin, “Divergence of temperature dependences of gamma-ray beam attenuation in the penetrated zone of Cu–Al melts at heating and subsequent cooling,” High Temp.-High Pres. 44 (4), 265–283 (2015).

    Google Scholar 

  31. V. V. Astaf’ev, A. R. Kurochkin, N. I. Yablonskikh, et al., “Influence of homogenizing heat treatment of liquid aluminum–copper alloys on the structure of rapidly quenched samples,” Metalloved. Term. Obrab. Met., No. 8, 20–23 (2017).

  32. I. G. Brodova, V. M. Zamyatin, and P. S. Popel’, “Conditions for the formation of metastable phases during the solidification of the Al–Zr melts,” Rasplavy 2 (6), 83–86 (1988).

    Google Scholar 

  33. I. G. Brodova, L. V. Bashlykov, I. V. Polents, and O. A. Chikova, “Influence of heat melt treatment on the structure and the properties of rapidly solidified aluminum alloys with transition metals,” Mater. Sci. Eng. A 226–228, 136–140 (1997).

  34. I. G. Brodova, I. V. Polents, L. V. Bashlykov, et al., “The forming mechanism of ultradispersed phases in rapidly solidified aluminum alloys,” Nanostr. Mater. 6 (1–4), 477–479 (1995).

  35. R. E. Ryltcev and L. D. Son, “Statistical description of glass-forming alloys with chemical interaction: application to Al–R systems,” Physica B, No. 406, 3625–3630 (2011).

  36. I. I. Ivanov, V. C. Zemskaya, V. K. Kubasov, et al., Melting, solidification, and shape formation at Low Gravity (Nauka, Moscow, 1979).

    Google Scholar 

  37. V. I. Dobatkin and V. I. Elagin, Granulated Aluminum Alloys (Metallurgiya, Moscow, 1981).

    Google Scholar 

  38. P. S. Popel’, O. A. Chikova, I. G. Brodova, and I. V. Polents, “Structure formation during the solidification of Al–In alloys,” Fiz. Met. Metalloved., No. 9, 111–115 (1992).

  39. L. A. Zhukova and S. I. Popel’, “Electron diffraction study of the structure of melts,” Zh. Fiz. Khim. 56 (11), 2702 (1982).

    CAS  Google Scholar 

  40. J. Hohler and J. Steeb, “Struktur von aluminium–indium schmelzen mittels rontgenweitwinkelbeugung,” Z. Naturforsch. A 30 (6–7), 771–774 (1975).

  41. G. I. Batalin, E. A. Beloborodova, and V. P. Kazimirov, Thermodynamics and Structure of Liquid Aluminum-Based Alloys (Metallurgiya, Moscow, 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Popel’.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popel’, P.S., Sidorov, V.E., Brodova, I.G. et al. Effect of Heat Treatment of a Melt on the Structure and Properties of the Corresponding Crystalline Ingots or Castings. Russ. Metall. 2020, 821–840 (2020). https://doi.org/10.1134/S0036029520080133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029520080133

Keywords:

Navigation