Skip to main content
Log in

Statistical Model for the Energy Exchange during Copper Vapor Condensation in an Inert Gas Atmosphere

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

Statistical analysis of the results of molecular dynamics (MD) calculation of gas-phase “self-assembling” of nanoclusters during metal vapor condensation revealed the laws of energy transfer between metallic clusters and inert gas atoms. A model is proposed to determine the parameters of heat exchange between clusters and the environment at the initial stage of condensation. This model is based on averaged MD data on the interaction between small clusters and argon atoms. The parameters that can be used to transfer information from MD to a macroscopic condensation model are numerically determined. The results obtained can be used to describe nucleation to predict a nanoparticle size distribution in the production of metallic powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. I. Gusev, “Nanomaterials, Nanostructures, Nanotechnologies (Fizmatlit, Moscow, 2007).

    Google Scholar 

  2. I. V. Frishberg, L. I. Kvater, B. P. Kuz’min, and S. V. Gribovskii, Gas-Phase Method for Producing Powders (Nauka, Moscow, 1978).

    Google Scholar 

  3. A. M. Ivanov, A. V. Khitrin, and V. V. Bryukhanov, “Synthesis of copper, brass, and silver nanoparticles by laser ablation and an optical study of the formed structures,” Estestv. Tekhnich. Nauki, No. 5, 26 (2011).

    Google Scholar 

  4. E. Yu. Loktionov, A. V. Ovchinnikov, Yu. S. Protasov, Yu. Yu. Protasov, and D. S. Sitnikov, “Gas–plasma flows under femtosecond laser ablation for metals in vacuum,” High Temperature 52, 132–134 (2014).

    Article  CAS  Google Scholar 

  5. V. V. Domashenko, M. I. Lerner, and S. G. Psakh’e, “Synthesis of composite metal nanoparticles by the electric explosion of conductors,” Zh. Strukt. Khim. 45, 112 (2004).

    Google Scholar 

  6. H. Yang, E. Goudeli, and C. J. Hogan, “Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations,” J. Chem. Phys. 148, 164304 (2018).

    Article  Google Scholar 

  7. A. G. Vorontsov, A. E. Korenchenko, and B. R. Gel’chin-skii, “Analysis of stability of small metallic clusters during metal vapor condensation,” High Temperature 57, 368–371 (2019).

    Article  CAS  Google Scholar 

  8. D. Yu. Lenev and G. E. Norman, “Molecular modeling of thermal accommodation of argon atoms on clusters of iron atoms,” High Temperature 57 (4), 490–497 (2019).

    Article  CAS  Google Scholar 

  9. I. V. Chepkasov, Y. Y. Gafner, and S. L. Gafner, “Synthesis of Cu nanoparticles by condensation from the gas phase,” Phase Transitions 90 (6), 590–597 (2017).

    Article  CAS  Google Scholar 

  10. B. M. Smirnov, “Processes involving clusters and small particles in a buffer gas,” Phys. Usp. 54, 691–721 (2011).

    Article  CAS  Google Scholar 

  11. S. P. Fisenko, “Microstructure of the supersaturation field in homogeneous nucleation in vapor–gas mixture,” The Russian J. Appl. Phys. 58 (5), 658–663 (2013).

    CAS  Google Scholar 

  12. A. Yu. Varaksin, “Clusterization of particles in turbulent and vortex two-phase flows,” High Temperature 52, 752–769 (2014).

    Article  CAS  Google Scholar 

  13. A. Yu. Varaksin, “Collision of particles and droplets in turbulent two-phase flows,” High Temperature 57, 555–572 (2019).

    Article  CAS  Google Scholar 

  14. A. E. Korenchenko and B. R. Gel’chinskii, “Mathematical simulation of the formation of metallic nanoparticles during the condensation of molten metal vapors,” Russ. Metall. (Metally), No. 8, 723–728 (2011).

  15. A. E. Korenchenko, A. G. Vorontsov, B. R. Gel’chinskii, and A. A. Zhukova, “Determination of small copper clusters based on simulation of the process of gas phase condensation,” High Temperature 57 (2), 275–278 (2019).

    Article  CAS  Google Scholar 

  16. A. E. Korenchenko, A. G. Vorontsov, B. R. Gel’chinskii, and G. P. Sannikov, “Statistical analysis of dimer formation in supersaturated metal vapor based on molecular dynamics simulation, Physica A 496, 147–155 (2018).

    Article  CAS  Google Scholar 

  17. A. E. Korenchenko, A. G. Vorontsov, and A. A. Zhukova, “Macroscopic model of copper vapor condensation in an inert gas atmosphere,” Russ. Metall. (Metally), No. 6, 601–609 (2019).

  18. S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  19. S. M. Foiles, M. I. Baskes, and M. S. Daw, “Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys,” Phys. Rev. B 33, 7983–7991 (1986).

    Article  CAS  Google Scholar 

  20. M. D. Morse, “Clusters of transition-metal atoms,” Chem. Revs. 86, 1049–1109 (1986).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project nos. 20-03-00527 A and 20-03-00370 A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Vorontsov.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korenchenko, A.E., Gel’chinskii, B.R., Vorontsov, A.G. et al. Statistical Model for the Energy Exchange during Copper Vapor Condensation in an Inert Gas Atmosphere. Russ. Metall. 2020, 877–884 (2020). https://doi.org/10.1134/S003602952008008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602952008008X

Keywords:

Navigation