Skip to main content
Log in

Effect of Salt Anion on Lithium Extraction in Systems LiX–H2O–Benzo-15-Crown-5–CHCl3, Where X Is Br, \({\mathbf{ClO}}_{{\mathbf{4}}}^{ - },\) and SCN

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Data on the extraction of lithium salts and the distribution of extractant in the LiX–H2O- benzo-15-crown-5–CHCl3 systems, where X is Br, \({\text{ClO}}_{4}^{ - },\) and SCN, have been first obtained in wide ranges of salt and extractant concentrations. The solubility of benzo-15-crown-5-ether in water in the temperature range 25–60°C and the isotherm of the distribution of crown ether between chloroform and water at room temperature have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. T. Giegerich, K. Battes, J. C. Schwenzer, and C. Day, Fusion Eng. Des. 149, 111339 (2019). https://doi.org/10.1016/j.fusengdes.2019.111339

    Article  CAS  Google Scholar 

  2. C. Forsberg, G. Zheng, R. Ballinger, and S. Lam, Nucl. Technol., 1 (2019). https://doi.org/10.1080/00295450.2019.1691400

  3. S. C. Brooks and G. R. Southworth, Environ. Pollut. 159, 219 (2011). https://doi.org/10.1016/j.envpol.2010.09.009

    Article  CAS  PubMed  Google Scholar 

  4. K. B. T. Ault, K. Brozek, L. Fan, et al., Lithium Isotope Enrichment, 1 (2012).

  5. V. V. Yakshin, V. I. Zhilov, S. V. Demin, et al., C. R. Chim. 10, 1020 (2007). https://doi.org/10.1016/j.crci.2007.02.007

    Article  CAS  Google Scholar 

  6. J. Xiao, Y. Ji, C. Shi, et al., J. Mol. Liq. 223, 1032 (2016).

    Article  CAS  Google Scholar 

  7. S. V. Demin, E. V. Fatyushina, V. I. Zhilov, et al., Russ. J. Inorg. Chem. 53, 1149 (2008). https://doi.org/10.1134/S0036023608070280

    Article  Google Scholar 

  8. Z. Pengrui, W. Mingyong, S. Jinhe, et al., Chem. Lett. 48, 1541 (2019). https://doi.org/10.1246/cl.190669

    Article  CAS  Google Scholar 

  9. E. S. Krivorotko, I. S. Ivanova, E. N. Pyatova, et al., Russ. J. Inorg. Chem. 61, 384 (2016). https://doi.org/10.1134/S0036023616030141

    Article  CAS  Google Scholar 

  10. Y. Kudo and S. Tomokata, J. Mol. Liq. 249, 904 (2018). https://doi.org/10.1016/j.molliq.2017.11.098

    Article  CAS  Google Scholar 

  11. R. E. C. Torrejos, G. M. Nisola, C. P. Lawagon, et al., Hydrometallurgy 164, 362 (2016). https://doi.org/10.1016/j.hydromet.2016.05.010

    Article  CAS  Google Scholar 

  12. Y. Takeda, K. Hashimoto, D. Yoshiyama, and S. Katsuta, J. Inclusion Phenom. Macrocycl. Chem. 42, 313 (2002). https://doi.org/10.1023/a:1016042402828

    Article  CAS  Google Scholar 

  13. O. A. Zakurdaeva, A. F. Asachenko, M. A. Topchiy, and S. V. Nesterov, J. Radioanal. Nucl. Chem. 316, 535 (2018). https://doi.org/10.1007/s10967-018-5773-9

    Article  CAS  Google Scholar 

  14. K. Nishizawa, S. Ishino, and H. Watanabe, J. Nucl. Sci. Technol. 21, 694 (1984).

    Article  CAS  Google Scholar 

  15. G. V. Kostikova, I. E. Maltseva, O. G. Krasnova, et al., Russ. Chem. Bull. 67, 2188 (2018). https://doi.org/10.1007/s11172-018-2353-7

    Article  CAS  Google Scholar 

  16. S. V. Demin, V. I. Zhilov, and A. Yu. Tsivadze, Russ. J. Inorg. Chem. 60, 633 (2015). https://doi.org/10.1134/S0036023615050046

    Article  CAS  Google Scholar 

  17. L. Cui, X. Yang, J. Wang, et al., Chem. Eng. J. 358, 435 (2019). https://doi.org/10.1016/j.cej.2018.09.181

    Article  CAS  Google Scholar 

  18. N. M. Zhavoronkov, D. A. Knyazev, and G. D. Klinski, Zh. Fiz. Khim. 52, 89 (1978).

    Google Scholar 

  19. N. M. Zhavoronkov, D. A. Knyazev, A. A. Ivlev, and G. D. Klinskii, Usp. Khim. 49, 385 (1980).

    Article  CAS  Google Scholar 

  20. U. Olsher, J. Am. Chem. Soc. 115, 3370 (1993). https://doi.org/10.1021/ja00061a062

    Article  CAS  Google Scholar 

  21. N. A. Shokurova, L. I. Demina, V. I. Zhilov, et al., Russ. J. Inorg. Chem. 61, 787 (2016). https://doi.org/10.1134/S0036023616060176

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The measurements were performed using equipment of the Shared Research Center of Physical Research Methods of the Frumkin Institute.

Funding

This work was carried out as part of the State Assignment of the Kurnakov Institute in the field of fundamental scientific research (44.2). The study was supported by the Russian Ministry of Education and Science (State Accounting no. NIOKTR AAAA-A19-119101590111-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Bezdomnikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezdomnikov, A.A., Demin, S.V. & Tsivadze, A.Y. Effect of Salt Anion on Lithium Extraction in Systems LiX–H2O–Benzo-15-Crown-5–CHCl3, Where X Is Br, \({\mathbf{ClO}}_{{\mathbf{4}}}^{ - },\) and SCN. Russ. J. Inorg. Chem. 65, 1077–1080 (2020). https://doi.org/10.1134/S0036023620070025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620070025

Keywords:

Navigation