Skip to main content
Log in

Phase Complex of the Quinary Reciprocal System Li+,Na+,K+||F,Cl,Br and Investigation of the Stable Tetrahedron LiF–NaF–KCl–KBr

  • PHYSICOCHEMICAL ANALYSIS OF INORGANIC SYSTEMS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The phase complex of the quinary reciprocal system Li+,Na+,K+||F,Cl,Br was studied for the first time. Partition according to graph theory determined that the tree of phases of the system has linear structure and comprises stable polytopes: the pentatope LiF–NaF–KF–KBr–KCl, the hexatope LiF–NaBr–NaCl–KCl–KBr–NaF, and the heptatope NaCl–KCl–KBr–LiBr–LiCl–LiF–NaBr, connected by the stable tetrahedron LiF–NaF–KCl–KBr and the stable pentatope LiF–KBr–NaBr–NaCl–KCl. Phase equilibria in the stable tetrahedron LiF–NaF–KCl–KBr were studied by differential thermal analysis and confirmed by X-ray powder diffraction analysis. In the tetrahedron, there is monovariant phase equilibrium L ⇄ LiF + α + KClxBr1 – x, where α is a limited solid solution based on NaF (LiF–NaF system), and KClxBr1 – x is a continuous series of solid solutions based on KCl and KBr. A 3D computer model of the projection of the phase complex on the concentration tetrahedron was constructed using the KOMPAS 3D software. The crystallization volumes of equilibrium phases are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Y. A. Chang, S. Chen, F. Zhang, et al., Prog. Mater. Sci. 49, 313 (2004). https://doi.org/10.1016/S0079-6425(03)00025-2

    Article  CAS  Google Scholar 

  2. R. Schmid-Fetzer, J. Phase Equilib. Diff. 35, 735 (2014). https://doi.org/10.1007/s11669-014-0354-2

    Article  CAS  Google Scholar 

  3. Fu Taibai, Zheng Zhoushun, Du Yong et al., Comput. Mater. Sci. 159, 478 (2019). https://doi.org/10.1016/j.commatsci.2018.12.036

    Article  CAS  Google Scholar 

  4. J. Kang and B. Liu, J. Alloys Compd. 673, 309 (2016). https://doi.org/10.1016/j.jallcom.2016.02.200

    Article  CAS  Google Scholar 

  5. G. D. Nipan, J. Alloys Compd. 371, 160 (2004). https://doi.org/10.1016/j.jallcom.2003.08.107

    Article  CAS  Google Scholar 

  6. E. I. Ardashnikova, Soros. Obraz. Zh., 8 (2) 30 (2004).

  7. O. Benes, J. P. M. van der Meer, and R. J. M. Konings, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 31, 209 (2007). https://doi.org/10.1016/j.calphad.2006.12.004

    Article  CAS  Google Scholar 

  8. K. Andryunas, Yu. Vishekes, V. Kabelka, et al., Pis’ma Zh. Eksp. Teor. Fiz. 42, 333 (1985).

    Google Scholar 

  9. I. I. Pubin and R. A. Thomas, J. Am. Ceram. Soc. 49, 100 (1969).

    Google Scholar 

  10. V. I. Minchenko and V. P. Stepanov, Ionic Melts: Elastic and Caloric Properties (Ural. Otd. Russ. Akad. Nauk, Yekaterinburg, 2008) [in Russian].

    Google Scholar 

  11. K. Kubota and M. Konomura, J. Atomic Energy Soc. Jpn 44, 393 (2002).

    Article  CAS  Google Scholar 

  12. T. T. Basiev, Fiz. Tverd. Tela 47, 1354 (2006).

    Google Scholar 

  13. Wei Xie and D. Morgan, Comput. Mater. Sci. 143, 505 (2018). https://doi.org/10.1016/j.commatsci.2017.11.042

  14. A. V. Burchakov, U. A. Emel’yanova, and I. K. Garkushin, in Proceedings of the II Congress of Chemists of the Republic of Dagestan (Dagestan. Gos. Univ., Makhachkala, 2019), p. 120.

  15. Thermal Constants of Substances: Handbook, Issue X, part 1: Tables of Accepted Values: Li, Na, Ed. by V. P. Glushko (VINITI, Moscow, 1981), p. 42 [in Russian].

    Google Scholar 

  16. Thermal Constants of Substances: Database (Institute of Thermal Physics of Extreme States, Joint Institute of High-Temperatures, Moscow, Russia; Chemical Faculty, Moscow State University, Moscow, Russia) [in Russian]. http://www.chem.msu.su/cgi-bin/tkv.pl? show=welcom.html (accessed July 7, 2019).

  17. I. K. Garkushin, M. S. Ragrina, and M. A. Sukharenko, Russ. J. Inorg. Chem. 63, 98 (2018). https://doi.org/10.1134/S0036023618010084

    Article  CAS  Google Scholar 

  18. N. K. Voskresenskaya, N. N. Evseeva, S. I. Berul’, and I. P. Vereshchetina, A Handbook of Melting of Anhydrous Inorganic Salt Systems (Akad. Nauk SSSR, Moscow, 1961), Vols. 1, 2 [in Russian].

    Google Scholar 

  19. Melting Diagrams of Salt Systems: Multicomponent Systems, Ed. by V. I. Posypaiko and E. A. Alekseeva (Khimiya, Moscow, 1977). [in Russian].

    Google Scholar 

  20. G. E. Egortsev, I. K. Garkushin, and M. A. Istomova, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 48 (10), 86 (2005).

  21. I. K. Garkushin, M. V. Chugunova, and S. N. Milov, Formation of Continuous Series of Solid Solutions in Ternary and Multicomponent Salt Systems (Ural. Otd. Russ. Akad. Nauk, Yekaterinburg, 2011) [in Russian].

    Google Scholar 

  22. A. I. Efimov, L. V. Belorukova, I. V. Vasil’kova, and V. P. Chechev, Properties of Inorganic Compounds (Khimiya, Leningrad, 1983), pp. 82, 83 [in Russian].

  23. J. M. Sangster and A. D. Pelton, J. Phys. Chem. Ref. Data 16, 509 (1987).

    Article  CAS  Google Scholar 

  24. G. E. Egortsev, I. K. Garkushin, and M. A. Istomova, Phase Equilibria and Chemical Interaction in Systems Containing Alkali Metal Fluorides and Bromides (Ural. Otd. Russ. Akad. Nauk, Yekaterinburg, 2008) [in Russian].

    Google Scholar 

  25. Yu. V. Moshchenskii, Prib. Tekh. Eksp., No. 6, p. 143 (2003).

  26. L. M. Kovba and V. K. Trunov, X-Ray Powder Diffraction Analysis (Mos. Gos. Univ., Moscow, 1976) [in Russian].

    Google Scholar 

  27. National Institute for Materials Science (NIMS) AtomWork Inorganic Material Database (AtomWork). https://crystdb.nims.go.jp/index_en.html (accessed June 1, 2019).

  28. L. I. Mirkin, Handbook of X-ray Diffraction Analysis of Polycrystals (Izd. Fiz.-Mat. Lit., Moscow, 1961) [in Russian].

    Google Scholar 

  29. V. I. Posypaiko, E. A. Alekseeva, V. N. Pervikova, et al., Zh. Neorg. Khim. 17, 3051 (1973).

    Google Scholar 

  30. A. V. Burchakov, E. M. Egorova, I. M. Kondratyuk, and Yu. V. Moshchenskii, Russ. J. Inorg. Chem. 63, 950 (2018). https://doi.org/10.1134/S0036023618070033

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed within the base part of the 2020 State Assignment for the Samara State Technical University, Samara, Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Garkushin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garkushin, I.K., Burchakov, A.V., Emel’yanova, U.A. et al. Phase Complex of the Quinary Reciprocal System Li+,Na+,K+||F,Cl,Br and Investigation of the Stable Tetrahedron LiF–NaF–KCl–KBr. Russ. J. Inorg. Chem. 65, 1040–1046 (2020). https://doi.org/10.1134/S0036023620070086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620070086

Keywords:

Navigation