Skip to main content
Log in

Facile Synthesis and Characterization of Nanospinel Ferrites: Structural, Magnetic, and Optical Studies

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract—

Nanoparticles of spinel ferrites with composition MFe2O4 (M = Zn, Ni) have been effectively synthesized by hydrothermal and sol-gel routes, in which Triton-X 100 is used as a surfactant. The structure of ferrite nanoparticles has been characterized by X-ray diffraction, which has showed single cubic spinel phases for all the samples. The surface morphology and elemental composition have been examined by field emission-scanning electron microscopy (FE-SEM) and energy dispersive X-ray (EDX) spectroscopy. A combined morphology in shape of sphere, octagon, and agglomerated flakes were found on FESEM images for the nanoparticles synthesized by both methods. FTIR showed underlying absorption bands pertinent to the stretching vibration of metal at the octahedral and tetrahedral sites. Vibrating sample magnetometer (VSM) results showed saturation magnetization (Ms) and remanence (Mr) for spinels prepared by hydrothermal route to be more than those produced by sol-gel methods. The optical band gap values were estimated by diffuse UV-visible reflectance spectroscopy (DRS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. S. B. Darling and S. D. Bader, J. Mater. Chem. 15, 4189 (2005).

    Article  CAS  Google Scholar 

  2. B. I. Kharisov, Arab. J. Chem. (2014).

  3. W. Huang, W. Zha, D. Zhao, and S. Feng, Solid State Sci. 87, 49 (2019).

    Article  CAS  Google Scholar 

  4. A. Saini, P. Kumar, B. Ravelo, et al., J. Eng. Sci. Technol. Int. 19, 911 (2016).

    Google Scholar 

  5. Y. A. Mirgorod, N. A. Borshch, V. M. Fedosyuk, and G. Y. Yurkov, J. Inorg. Mater. 49, 1375 (2013).

    Google Scholar 

  6. A. Karimi, M. Amin, A. Sadatlu, et al., J. Adv. Powder Technol. 26, 1529 (2015).

    Article  CAS  Google Scholar 

  7. B. B. V. S. Vara Prasad, K. V. Ramesh, and A. Srinivas, Solid State Sci. 86, 86 (2018).

    Article  CAS  Google Scholar 

  8. I. Sharifi, H. Shokrollahi, and S. Amiri, J. Magn. Magn. Mater. 324, 903 (2012).

    Article  CAS  Google Scholar 

  9. T. Ahmad, H. Bae, Y. Iqbal, et al., J. Magn. Magn. Mater. 381, 151 (2015).

    Article  CAS  Google Scholar 

  10. C. Si, Y. Zhang, C. Zhang, Hui Gao, et al., J. Electrochim. Acta 245, 829 (2017).

    Article  CAS  Google Scholar 

  11. E. F. Kustov, V. M. Novotortsev, S. V. Serebryannikov, and V. P. Cheparin, Russ. J. Inorg. Chem. 56, 591 (2011).

    Article  CAS  Google Scholar 

  12. M. Vucinic-Vasic, E. S. Bozin, L. Bessais, et al., J. Phys. Chem. C 117, 12358 (2013).

    Article  CAS  Google Scholar 

  13. M. M. Naik, H. S. B. Naik, G. Nagaraju, et al., J. Mater. Sci. Mater. Electronics 29, 20395 (2018).

    Article  CAS  Google Scholar 

  14. C. DH and H. XR, Mater. Res. Bull. 36, 1369 (2001).

  15. J. Huo and M. Wei, J. Mater. Lett. 63, 1183 (2009).

    Article  CAS  Google Scholar 

  16. G. D. Nipan, M. N. Smirnova, M. A. Kop’eva, and G. E. Nikiforova, Russ. J. Inorg. Chem. 64, 1304 (2019).

    Article  CAS  Google Scholar 

  17. S. Son, M. Taheri, E. Carpenter, et al., J. Appl. Phys. 91, 7589 (2002).

    Article  CAS  Google Scholar 

  18. J. Jiang and Y. M. Yang, J. Mater. Lett. 61, 4276 (2007).

    Article  CAS  Google Scholar 

  19. S. A. S. Ebrahimi and J. Azadmanjiri, J. Noncrystal. Solids 353, 802 (2007).

    Article  Google Scholar 

  20. K. Nejati and R. Zabihi, J. Chem. Cent. 6, 23 (2012).

    Article  CAS  Google Scholar 

  21. C. M. Phan and H. M. Nguyen, J. Phys. Chem. A 121, 3213 (2017).

    Article  CAS  Google Scholar 

  22. S.V. Dyachenko, K.D. Martinson, I.A. Cherepkova, and A. I. Zhernovoi, Russ. J. Appl. Chem. 89, 535 (2016).

    Article  CAS  Google Scholar 

  23. R. S. Yadav, J. Havlica, J. Masilko, et al., J. Magn. Magn. Mater. 394, 439 (2015).

    Article  Google Scholar 

  24. C. Yao, Q. Zeng, G. F. Goya, et al., J. Phys. Chem., 111, 12 274 (2007).

    Google Scholar 

  25. T. Sanaeishor, H. Tavakkoli, and F. Mohave, J. Appl. Cat. A: Gen. 470, 56 (2014).

    Article  Google Scholar 

  26. D. Dhak and P. Pramanik, J. Am. Ceram. Soc. A: Gen. 89, 1014 (2006).

    Article  CAS  Google Scholar 

  27. X. Wei, D. Chen and W. Tang, J. Mater. Chem. Phys. 103, 54 (2007).

    Article  CAS  Google Scholar 

  28. M. Farbod, V. K. Dehbidi and M. Z. Shoushtari, Ceram. Int. 43, 13 670 (2017).

    Article  Google Scholar 

  29. M. Rashad, A. M. Ali, M. I. Sayyed, and I. V. Kityk, J. Mater. Sci. Mater. Electronics 29, 10 123 (2018).

    Article  Google Scholar 

  30. M. Y. Nassar and I. S. Ahmed, Mater. Res. Bull. 47, 2638 (2012).

    Article  CAS  Google Scholar 

  31. A. G. Banuti and A. Ghaemi, Rus. J. Inorg. Chem. 63, 89 (2018)

    Article  CAS  Google Scholar 

  32. M. Yazdanbakhsh, H. Tavakkoli, and S. M. Hosseini, S. Afr. J. Chem. 64, 71 (2011).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haman Tavakkoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahil Abbasi Hormozi, Tavakkoli, H., Shabari, A.R. et al. Facile Synthesis and Characterization of Nanospinel Ferrites: Structural, Magnetic, and Optical Studies. Russ. J. Inorg. Chem. 65, 1093–1101 (2020). https://doi.org/10.1134/S0036023620070104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620070104

Keywords:

Navigation