Skip to main content
Log in

Non-isothermal Crystallization, Melting Behavior, Thermal Decomposition, Fluidity and Mechanical Properties of Melt Processed Poly(L-lactic acid) Nucleated by N,N'-Adipic Bis(piperonylic acid) Dihydrazide

  • STRUCTURE AND PROPERTIES
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Enhancing on the crystallization ability of poly(L-lactic acid) (PLLA) during practical processing is one of the most effective way to overcome the poor heat resistance. In this work, N,N '-adipic bis(piperonylic acid)dihydrazide (PAAH) was synthesized to be firstly used as a heterogeneous nucleating agent to evaluate its influence on the performances, including the crystallization, melting behavior, thermal stability, fluidity and mechanical property, of PLLA. The nucleation effect of PAAH was determined via the melt-crystallization of PLLA with various PAAH concentrations from 0.5 to 3 wt % at different cooling rates, as well as the different final melting temperature Tf . The results revealed that the PAAH could significantly accelerate the crystallization of PLLA in cooling, and the melt-crystallization peak shifted toward the higher temperature with increasing of PAAH concentration, resulting from an increase of nucleation density in PLLA matrix. Additionally, both the cooling rate and Tf were two critical factors to crystallization, a higher cooling rate could weaken the crystallization ability of PLLA/PAAH, and the 200°C was the optimum melting process temperature. For cold-crystallization, PAAH had an inhibition for the cold-crystallization of PLLA, but the cold-crystallization peak moved toward the higher temperature with increasing of heating rate because of thermal inertia. There existed only a single melting peak after melt-crystallization at cooling of 1°C, which further confirmed the advanced nucleation effect of PAAH, but the double-melting peaks appeared after isothermal crystallization at 110°C, which was attributed to the melt-recrystallization. The other measurements showed that, compared to the neat PLLA, the addition of PAAH decreased the thermal stability and tensile modulus of PLLA, but PLLA/PAAH samples had the better fluidity, the higher tensile strength and the longer elongation at break.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. H. Y. Yin, X. F.Wei, R. Y. Bao, Q. X. Dong, Z. Y. Liu, W. Yang, B. H. Xie, and M. B. Yang, ACS Sustainable Chem. Eng. 3, 654 (2015).

    Article  CAS  Google Scholar 

  2. X. Dai, Y. Cao, X. W. Shi, and X. L. Wang, RSC Adv. 6, 71461 (2016),

  3. L. L. Han, P. J. Pan, G. R. Shan, and Y. Z. Bao, Polymer 63, 144 (2015).

    Article  CAS  Google Scholar 

  4. Y. Q. Feng, P. M. Ma, P. W. Xu, R. Y. Wang, W. F. Dong, M. Q. Chen, and C. Joziasse, Int. J. Biol. Macromol. 106, 955 (2018).

    Article  CAS  Google Scholar 

  5. L. Genovese, M. Soccio, N. Lotti, M. Gazzano, V. Siracusa, E. Salatelli, F. Balestra, and A. Munari, Eur. Polym. J. 95, 289 (2017).

    Article  CAS  Google Scholar 

  6. B. Dillon, P. Doran, E. Fuenmayor, A. V. Healy, N. M. Gately, I. Major, and J. G. Lyons, Polymers 11, 1172 (2019).

    Article  CAS  Google Scholar 

  7. Y. Li, C. Y. Han, Y. C. Yu, L. G. Xiao, and Y. Shao, J. Therm. Anal. Calorim. 131, 2213 (2018).

    Article  CAS  Google Scholar 

  8. Y. Q. Fan, Z. Y. Yu, Y. H. Cai, S. F. Yan, X. S. Chen, and J. B. Yin, Polym. Int. 62, 647 (2013).

    Article  CAS  Google Scholar 

  9. J. Ahmed, Y. A. Arfat, E. Castro-Aguirre, and R. Auras, J. Therm. Anal. Calorim. 125, 205 (2016).

    Article  CAS  Google Scholar 

  10. P. Song, G. Y. Chen, Z. Y. Wei, Y. Chang, W. X. Zhang, and J. C. Liang, Polymer 53, 4300 (2012).

    Article  CAS  Google Scholar 

  11. X. K. Xu, W. J. Zhen, S. Z. Bian, Polym.-Plast. Technol. Eng. 57, 1858 (2018).

    Article  CAS  Google Scholar 

  12. P. F. Si, F. L. Luo, P. Xue, and D. G.Yan, J. Polym. Res. 23, 118 (2016)

    Article  Google Scholar 

  13. Y. C. Chen, S. Y. Wang, Q. X. Chen, Z. L. Xi, C. W. Wang, X. Y. Chen, X. Feng, R. Liang, and J. J. Yang, Eur. Polym. J. 72, 222 (2015).

    Article  CAS  Google Scholar 

  14. P. P. Pan, Z. C.Liang, and A. Cao, ACS Appl. Mater. Interfaces 1, 402 (2009).

    Article  CAS  Google Scholar 

  15. J. F. M. de Almeida, A. L. N. da Silva, V. A. Escocio, A. H. M. D. T. da Silva, A. M. F. de Sousa, C. R. Nascimento, and L. C. Bertolino, Polym. Bull. 73, 3531 (2016).

    Article  Google Scholar 

  16. Y. Zhao, B. Liu, C. You, and M. F. Chen, Mater. Des. 89, 573 (2016).

    Article  CAS  Google Scholar 

  17. Y. H. Li, C. H. Chen, J. Li, and X. Z. S. Sun, J. Appl. Polym. Sci. 124, 2968 (2012).

    Article  CAS  Google Scholar 

  18. G. X. Zou, Q. W. Jiao, X. Zhang, C. X. Zhao, and J. C. Li, J. Appl. Polym. Sci. 132, 41367 (2015).

    Article  Google Scholar 

  19. N. Kawamoto, A. Sakai, T. Horikoshi, T. Urushihara, and E. Tobita, J. Appl. Polym. Sci. 103, 198 (2007).

    Article  CAS  Google Scholar 

  20. T. Wang, Y. Yang, C. Z. Zhang, Z. B. Tang, H. N. Na, and J. Zhu, J. Appl. Polym. Sci. 130, 1328 (2013).

    Article  CAS  Google Scholar 

  21. Y. M. Wang, D. R. He, X. Wang, W. Cao, Q. Li, and C. Y. Shen, Polym. Bull. 70, 2911 (2013).

    Article  CAS  Google Scholar 

  22. H. B. Li and M. A. Huneault, Polymer 48, 6855 (2007).

    Article  CAS  Google Scholar 

  23. K. Fukushima, D. Tabuani, M. Arena, M. Gennari, and G. Camino, React. Funct. Polym. 73, 540 (2013).

    Article  CAS  Google Scholar 

  24. J. Wu, X. X. Zou, B. Jing, and W. L. Dai, Polym. Eng. Sci. 55, 1104 (2015).

    Article  Google Scholar 

  25. Z. Y. Wei, S. N. Shao, M. L. Sui, P. Song, M. M. He, Q. Xu, X. F. Leng, Y. S. Wang, and Y. Lia, Eur. Polym. J. 118, 337 (2019).

    Article  CAS  Google Scholar 

  26. L. Zheng and W. J. Zhen, Iran. Polym. J. 27, 239 (2018).

    Article  CAS  Google Scholar 

  27. Y. Y. Liang, J. Z. Xu, X. Y. Liu, G. J. Zhong, and Z. M. Li, Polymer 54, 6479 (2013).

    Article  CAS  Google Scholar 

  28. L. Jiang, T. F. Shen, P. W. Xu, X. Y. Zhao, X. J. Li, W. F. Dong, P. M. Ma, and M. Q. Chen, e-Polym. 16, 1 (2016).

  29. T. F. Shen, Y. S. Xu, X. X. Cai, P. M. Ma, W. F. Dong, and M. Q. Chen, RSC Adv. 6, 48365 (2016).

  30. T. Y. Liu, W. C. Lin, M. C. Yang, and S. Y. Chen, Polymer 46, 12586 (2005).

    Article  CAS  Google Scholar 

  31. L. S. Zhao and Y. H. Cai, Polym. Sci., Ser. A 60, 777 (2018).

    Article  CAS  Google Scholar 

  32. Z. Z. Su, W. H. Guo, Y. J. Liu, Q. Y. Li, and C. F. Wu, Polym. Bull. 62, 629 (2009).

    Article  CAS  Google Scholar 

  33. Y. Q. Fan, J. Zhu, S. F. Yan, X. S. Chen, and J. B. Yin, Polymer 67, 63 (2015).

    Article  CAS  Google Scholar 

  34. Y. G. Yin, Y. Song, Z. J. Xiong, X. Q. Zhang, S. de Vos, R. Y. Wang, C. A. P. Joziasse, G. M. Liu, and D. J. Wang, J. Appl. Polym. Sci. 133, 43015 (2016).

    Google Scholar 

  35. N. Kawamoto, A. Sakai, T. Horikoshi, T. Urushihara, and E. Tobita, J. Appl. Polym. Sci. 103, 198 (2007).

    Article  CAS  Google Scholar 

  36. V. Ratta, A. Ayambem, J. E. Mcgrath, and G. L. Wilkes, Polymer 42, 6173 (2001).

    Article  CAS  Google Scholar 

  37. M. Yasuniwa and T. Satou, J. Polym. Sci., Part B: Polym. Phys. 40, 2411 (2002).

    Article  CAS  Google Scholar 

  38. Y. H. Cai, Y. Tang, and L. S. Zhao, J. Appl. Polym. Sci. 132, 42402 (2015).

    Article  Google Scholar 

  39. M. A. Elsawy, G. R. Saad, and A. M. Sayed, Polym. Eng. Sci. 56, 987 (2016).

    Article  CAS  Google Scholar 

  40. Y. H. Cai and L. S. Zhao, Polym. Bull. 76, 2295 (2019).

    Article  CAS  Google Scholar 

  41. Z. Y. Yu, J. B. Yin, S. F. Yan, Y. T. Xie, J. Ma, and X. S. Chen, Polymer 48, 6439 (2007).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Foundation of Chongqing Municipal Science and Technology Commission (cstc2017shmsA20021 and cstc2019jcyj-msxmX0876), Scientific and Technological Research Program of Chongqing Municipal Education Commission (project number KJQN201801319).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Hua Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li-Sha Zhao, Yan-Hua Cai Non-isothermal Crystallization, Melting Behavior, Thermal Decomposition, Fluidity and Mechanical Properties of Melt Processed Poly(L-lactic acid) Nucleated by N,N'-Adipic Bis(piperonylic acid) Dihydrazide. Polym. Sci. Ser. A 62, 343–353 (2020). https://doi.org/10.1134/S0965545X20040124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X20040124

Navigation