Skip to main content
Log in

Structure and Thermomechanical Properties of Tubes Based on Poly(L-lactide) Microfibers

  • MEDICAL POLYMERS
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Using X-ray diffraction, electron microscopy, and differential scanning calorimetry, the structure and mechanical properties of tubes based on poly (L-lactide) microfibers obtained by electrospinning from a dichloroethane solution and designed for implantation in small diameter blood vessels during prosthetics are studied. It is shown that freshly formed microfibers have an amorphous structure and their heat treatment at a temperature of 70–160°С is accompanied by crystallization of the polymer. Microfibers consist of lamellas ~20 × 200 nm in size, and their crystallites, the sizes of which depend on the processing temperature and amount to 25–34 nm, are characterized by the α-modification. The mechanical characteristics of the obtained tubes are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. I. P. Dobrovolskaya, V. E. Yudin, P. V. Popryadukhin, and E. M. Ivan’kova, Polymer Scaffolds for Tissue Engineering (Mediapapir, St. Petersburg, 2018).

    Google Scholar 

  2. G. I. Popov, A. E. Kryukov, P. V. Popryadukhin, Yu. A. Nashchekina, E. M. Ivan’kova, V. N. Vavilov, V. E. Yudin, and N. V. Smirnova, Cell Tissue Biol. 12, 359 (2018).

    Article  Google Scholar 

  3. B. D. Ulery, L. S. Nair, and C. T. Laurencin, J. Polym. Sci., Part B: Polym. Phys. 49, 832 (2011).

    Article  CAS  Google Scholar 

  4. D. Bendix, Polym. Degrad. Stab. 59, 129 (1998).

    Article  CAS  Google Scholar 

  5. J. A. Hubbell, Curr. Opin. Solid State Mater. Sci. 3, 246 (1998).

    Article  CAS  Google Scholar 

  6. O. Castano, N. Sachot, E. Xuriguera, E. Engel, J. A. Planell, J. H. Park, and G. Z. Jin, ACS Appl. Mater. Interfaces 6, 7512 (2014).

    Article  CAS  Google Scholar 

  7. M. Obarzanek-Fojt, Y. Elbs-Glatz, E. Lizundia, L. Diener, J. R. Sarasua, and A. Bruinink, Nanomedicine 10, 1041 (2014).

    Article  CAS  Google Scholar 

  8. P. V. Popryadukhin, G. I. Popov, I. P. Dobrovolskaya, V. E. Yudin, V. N. Vavilov, G. Yu. Yukina, E. M. Ivan’kova, and I. O. Lebedeva, Cardiovasc. Eng. Technol. 7, 78 (2016).

    Article  CAS  Google Scholar 

  9. P. V. Popryadukhin, G. I. Popov, G. Yu. Yukina, I. P. Dobrovolskaya, E. M. Ivan’kova, V. N. Vavilov, and V. E. Yudin, Int. J. Biomater 2017, Article ID 9034186 (2017).

    Article  CAS  Google Scholar 

  10. V. R. Regel’, A. I. Slutsker, and E. E. Tomashevskii, Kinetic Nature of Strength in Solid Bodies (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  11. W. Hoogsteen, A. R. Postema, A. J. Pennings, and G. Brinke, Macromolecules 23, 634 (1990).

    Article  CAS  Google Scholar 

  12. D. Brizzolara, H.-J. Cantow, K. Diederichs, E. Keller, and A. Domb, Macromolecules 29, 191 (1996).

    Article  CAS  Google Scholar 

  13. A. M. El-Hadi, Polym.–Plast. Technol. Mater. 58, 31 (2019).

    CAS  Google Scholar 

  14. A. R. Postema, A. N. Luiten, H. Oostra, and A. J. Pennings, J. Appl. Polym. Sci. 39, 1275 (1996).

    Article  Google Scholar 

  15. J. W. Leenslag and A. J. Pennings, Macromol. Chem. Phys. 188, 1809 (1987).

    Article  CAS  Google Scholar 

  16. H. Zhou, T. B. Green, and Y. L. Joo, Polymer 47, 7497 (2006).

    Article  CAS  Google Scholar 

  17. S. Hara, S. Shuto Watanabe, K. Takahashi, S. Shimizu, and H. Ikake, Polymers 10, 1083 (2018).

    Article  Google Scholar 

  18. B. Eling, S. Gogolevski, and A. J. Pennings, Polymer 23, 1587 (1982).

    Article  CAS  Google Scholar 

  19. J. Zhang, Y. Duan, H. Sato, H. Tsuji, I. Noda, S. Yan, and Y. Ozaki, Macromolecules 38, 8012 (2005).

    Article  CAS  Google Scholar 

  20. V. A. Marikhin and L. P. Myasnikova, Supramolecular Structure of Polymers (Khimiya, Leningrad, 1977) [in Russian].

    Google Scholar 

  21. K. E. Perepelkin, Physical-Chemical Foundations of Chemical Fibers Spinning (Khimiya, Moscow, 1978) [in Russian].

  22. J. Ren and K. Adachi, Macromolecules 36, 5180 (2003).

    Article  CAS  Google Scholar 

  23. K. Jamshidi, S. H. Hyon, and Y. Ikada, Polymer 29, 2229 (1988).

    Article  CAS  Google Scholar 

  24. P. K. Baumgartner, J. Colloid Interfase Sci. 36, 71 (1971).

    Article  Google Scholar 

  25. J. D. Schiffman and C. L. Schauer, Polym. Rev. 48, 317 (2008).

    Article  CAS  Google Scholar 

  26. P. Lamm, G. Juchem, S. Milz, M. Schuffenhauer, and B. Reichart, Circulation 104, 1108 (2001).

    Article  Google Scholar 

  27. G. Konig, T. N. McAllister, N. Dusserre, S. A. Garrido, C. Iyican, A. Marini, A. Fiorillo, H. Avila, W. Wystrychowski, K. Zagalski, M. Maruszewski, A. L. Jones, L. Cierpka, L. M. de la Fuente, and N. L’Heureux, Biomaterials 30, 1542 (2009).

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 19-73-30003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Dobrovol’skaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobrovol’skaya, I.P., Zavrazhnykh, N.A., Popryadukhin, P.V. et al. Structure and Thermomechanical Properties of Tubes Based on Poly(L-lactide) Microfibers. Polym. Sci. Ser. A 62, 354–360 (2020). https://doi.org/10.1134/S0965545X20040057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X20040057

Navigation