Skip to main content
Log in

Adsorption of Poly(acrylic acid) onto Negatively Charged Polystyrene Sulfate Latex Particles by Means of Particle Tracking of Brownian Motion, Electrophoretic Mobility and Fourier Transform Infrared Spectroscopy

  • POLYELECTROLYTES
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

The adsorption of poly(acrylic acid) (PAA5K) with negative charge on the highly negatively charged polystyrene sulfate latex (PSL) particles at various ionic strengths were investigated in the present study. The adsorption of PAA was promoted with high ionic strength while the driving forces were mainly controlled by the non-electrostatic interactions including hydrogen bondings, dipole–ions and dipole–dipole. The adsorbed layer thickness of PAA on PSL and electrophoretic mobility of PSL in the presence of PAA increased with increasing ionic strength. In case of adsorption of 5 ppm PAA, the adsorbed layer thickness increased slightly about 2 times corresponding with 41.3 to 80.4 nm while the electrophoretic mobility of PSL changed from –4.87 to –6.31 μm cm/(V s) with increasing 100 times of the ionic strength from 0.1 to 10 mM KCl. The change of surface functional groups of PSL after PAA adsorption was thoroughly determined by Fourier transform infrared (FTIR) spectroscopy. The distinction between the electrostatic and the non-electrostatic interaction which contributed to the adsorption of PAA on the PSL particles and the adsorbed polymer conformations at different salt concentrations was clearly clarified. We demonstrate that the adsorbed PAA conformations were more vertically swollen at the PSL solid–solution interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 2.
Fig. 1.
Fig. 2.
Fig. 3.
Scheme 3.

Similar content being viewed by others

REFERENCES

  1. S. Ding, W. Wei, and Z. Yang, Polymer 50, 1609 (2009).

    Article  CAS  Google Scholar 

  2. Z. Ajji and A.M. Ali, J. Hazard. Mater. 173, 71 (2010).

    Article  CAS  Google Scholar 

  3. M. Y. Abdelaal, M. S. I. Makki, and T. R. A. Sobahi, Am. J. Polym. Sci. 2, 73 (2012).

    Article  Google Scholar 

  4. Y. Adachi, L. Feng, and M. Kobayashi, Colloids Surf., A 471, 38 (2015).

    Article  CAS  Google Scholar 

  5. J. Chun, A. P. Poloski, and E. K. Hansen, J. Colloid Interface Sci. 348, 280 (2010).

    Article  CAS  Google Scholar 

  6. J. Lyklema and L. Deschenes, Adv. Colloid Interface Sci. 168, 135(2011).

    Article  CAS  Google Scholar 

  7. S. Barany, M. Nagy, and J. Skvarla, Colloids Surf., A 413, 200 (2012).

    Article  CAS  Google Scholar 

  8. M. Lapointe and B. Barbeau, Sep. Purif. Technol. 231, 115893 (2020).

    Article  CAS  Google Scholar 

  9. Y. Adachi, Y. Kusaka, and A. Kobayashi, Colloids Surf., A 376, 9 (2011).

    Article  CAS  Google Scholar 

  10. K. Aoki and Y. Adachi, J. Colloid Interface Sci. 300, 69 (2006).

    Article  CAS  Google Scholar 

  11. A. Foissy, A. E. Attar, and J. M. Lamarche, J. Colloid Interface Sci. 96, 275 (1983).

    Article  CAS  Google Scholar 

  12. J. C. Prasad, S. Bhosale, and J. C. Berg, J. Colloid Interface Sci. 358, 123 (2011).

    Article  Google Scholar 

  13. D. Santhiya, S. Subramanian, K. A. Natarajan, and S. G. Malghan, J. Colloid Interface Sci. 216,143 (1999).

    Article  CAS  Google Scholar 

  14. S. Liufu, H. Xiao, and Y. Li, J. Colloid Interface Sci. 281, 155 (2005).

    Article  CAS  Google Scholar 

  15. P. S. Kuiri and F. Tjipangandjara, Colloids Surf., A 55, 245 (1991).

    Article  Google Scholar 

  16. J. Li and K. Zhao, J. Phys. Chem. B 117, 11843 (2013).

    Article  CAS  Google Scholar 

  17. H. Y. T. Chen, W. C. J. Wei, K. C. Hsu, and C. S. Chen, J. Am. Ceram. Soc. 90, 1709 (2007).

    Article  CAS  Google Scholar 

  18. R. Z. Stanislav, S. Dukhin, and C. Werner, J. Colloid Interface Sci. 328, 217 (2008).

    Article  Google Scholar 

  19. Y. Kusaka and Y. Adachi, Colloid. Surf., A 306, 166 (2007).

  20. K. E. V. Holde, Physical Biochemistry (Prentice-Hall, Inc., Englewood Cliffs, NJ, 1971), p. 166.

    Google Scholar 

  21. T. Swift, L. Swanson, M. Geoghegan, and S. Rimmer, Soft Matter 12, 2542 (2016).

    Article  CAS  Google Scholar 

  22. A. B. Z. Adamczyk, B. Jachimska, T. Jasinski, and P. Warszynski, J. Phys. Chem. B 110, 22426 (2006).

    Article  CAS  Google Scholar 

  23. I. Kagawa and K. Katsuura, J. Polym. Sci. 7, 89 (1951).

    Article  CAS  Google Scholar 

  24. S. S. D. Santhiya, K. A. Natarajan, and S. G. Malghan, J. Colloid Interface Sci. 216, 143 (1999).

    Article  CAS  Google Scholar 

  25. C. O. M’Bareck, Q. T. Nguyen, M. Metayer, J. M. Saiter, and M. R. Garda, Polymer 45, 4181 (2004).

    Article  Google Scholar 

  26. C.-W. Liew, H. Ng, A. Numan, and S. Ramesh, Polymers 8, 179 (2016).

    Article  Google Scholar 

  27. S. van Berkum, J. T. Dee, A. P. Philipse, and B. H. Erne, Int. J. Mol. Sci. 14, 10162 (2013).

    Article  Google Scholar 

  28. T. K. Y. Yan, N. H. Kim, B.-C. Ku, and J. H. Lee, J. Mater. Chem. A 1, 5892 (2013).

    Article  CAS  Google Scholar 

  29. M. D. Lane, Am. Mineral. 92, 1 (2007).

    Article  CAS  Google Scholar 

  30. J. L. Burns, Y. D. Yan, G. J. Jameson, and S. Biggs, J. Colloid Interface Sci. 247, 24 (2002).

    Article  CAS  Google Scholar 

  31. Y. Yokoyama and S. Yusa, Polymer 45, 985 (2013).

    Article  CAS  Google Scholar 

  32. T. D. Pham, T. U. Do, T. T. Pham, T. A. H. Nguyen, T. K. T. Nguyen, N. D. Vu, T. S. Le, C. M. Vu, and M. Kobayashi, Colloid Polym. Sci. 297, 13 (2019).

    Article  CAS  Google Scholar 

  33. T. D. Pham, T. T. Bui, V. T. Nguyen, T. K. V. Bui, T. T. Tran, Q. C. Phan, T. D. Pham, and T. H. Hoang, Polymers 10, 220 (2018).

    Article  Google Scholar 

  34. H. L. De Ranjit and B. Das, J. Mol. Liq. 251, 94 (2018).

    Article  Google Scholar 

  35. J. A. De Witt and T.G.M. van de Ven, Langmuir 8, 788 (1992).

    Article  CAS  Google Scholar 

  36. T. M. Y. Adachi, Colloids Surf., A 113, 229 (1996).

    Article  CAS  Google Scholar 

  37. M. A. C. S. Henrica, G. M. Van de Steeg, A. De Keizer, and B. H. Bijsterbosch, Langmuir 8, 2538 (1992).

    Article  Google Scholar 

  38. V. Shubin and P. Linse, J. Phys. Chem. B 99, 1285 (1995).

    Article  CAS  Google Scholar 

  39. S. Biggs and T. W. Healy, J. Chem. Soc. Faraday Trans. 90, 3415 (1994).

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by JSPS KAKENHI (16H06382).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tien Duc Pham or Yasuhisa Adachi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thi Hai Yen Doan, Pham, T.D., Yamashita, Y. et al. Adsorption of Poly(acrylic acid) onto Negatively Charged Polystyrene Sulfate Latex Particles by Means of Particle Tracking of Brownian Motion, Electrophoretic Mobility and Fourier Transform Infrared Spectroscopy. Polym. Sci. Ser. A 62, 321–329 (2020). https://doi.org/10.1134/S0965545X20040045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X20040045

Navigation