Skip to main content
Log in

Structure and Properties of Coatings in the Cr–B–C–N System Obtained Using a CrB2 Cathode by the Method of Pulsed Cathode-Arc Evaporation P-CAE in Ar, N2, and C2H4 Media

  • NEW SUBSTANCES, MATERIALS, AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The technology of pulsed cathode-arc evaporation (P-CAE) has been successfully applied for coating deposition in the Cr–B–C–N system. The coatings had a structure typical for arc coatings with a significant fraction of the condensed droplet phase, but the formation of an adverse columnar morphology has been eliminated. The coatings contained crystallites of the h-CrB2 and с-CrN phases along with a large amount of the amorphous phase, the composition of which varied depending on the type of the working environment. The coatings obtained in argon demonstrated the highest hardness of 12 GPa, while those obtained in the C2H4 medium were characterized by the highest elastic-plastic properties (elastic recovery 72%). The friction coefficient of coatings deposited in Ar, N2, and C2H4 media was 0.7, 0.4, and 0.3, respectively. The phase of diamond-like carbon in the latter case resulted in a decrease in the friction coefficient due to high fraction of sp2-bonded carbon serving as a dry lubricant. The coatings of the optimal composition were resistant to high temperature oxidation in the temperature range 600–1000°С. At high temperatures, the oxidation process was followed by intensive diffusion of boron atoms in depth of the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Jiang, J., Wang, Y., Zhong, Q., et al., Surf. Coat. Technol., 2011, vol. 206, pp. 473–478.

    CAS  Google Scholar 

  2. Chowdhury, S., Polychronopoulou, K., Cloud, A., et al., Thin Solid Films, 2015, vol. 595, pp. 84–91.

    CAS  Google Scholar 

  3. Yu, L.G., Khor, K.A., and Sundararajan, G., Surf. Coat. Technol., 2006, vol. 201, pp. 2849–2853.

    CAS  Google Scholar 

  4. Nedfors, N., Tengstrand, O., Lu, J., et al., Surf. Coat. Technol., 2014, vol. 257, pp. 295–300.

    CAS  Google Scholar 

  5. Mirzaei, S., Alishahi, M., Souček, P., et al., Surf. Coat. Technol., 2019, vol. 358, pp. 843–849.

    CAS  Google Scholar 

  6. Dahm, K.L., Jordan, L.R., Haase, J., and Dearnley, P.A., Surf. Coat. Technol., 1998, vols. 108–109, pp. 413–418.

    Google Scholar 

  7. Audronis, M., Leyland, A., Kelly, P.J., and Matthews, A., Surf. Coat. Technol., 2006, vol. 201, pp. 3970–3976.

    CAS  Google Scholar 

  8. Jha, M., Marka, S., Krishna, M.Gh., and Ganguli, A.K., Mater. Lett., 2012, vol. 73, pp. 220–222.

    Google Scholar 

  9. Zhang, Sh., Wang, Zh., Guo, P., et al., Surf. Coat. Technol., 2017, vol. 322, pp. 134–140.

    CAS  Google Scholar 

  10. Musil, J., Surf. Coat. Technol., 2012, vol. 207, pp. 50–65.

    Google Scholar 

  11. Cheng, C.-H., Lee, J.-W., Ho, L.-W., et al., Surf. Coat. Technol., 2011, vol. 206, pp. 1711–1719.

    CAS  Google Scholar 

  12. Nedfors, N., Primetzhofer, D., Wang, L., et al., Surf. Coat. Technol., 2015, vol. 266, pp. 167–176.

    CAS  Google Scholar 

  13. Boll, T., Thuvander, M., Koch, S., et al., Ultramicroscopy, 2015, vol. 159, pp. 217–222.

    CAS  Google Scholar 

  14. Kiryukhantsev-Korneev, Ph.V., Pierson, J.F., Bychkova, M.Y., et al., Tribol. Lett., 2016, vol. 63, no. 3, p. 44.

    Google Scholar 

  15. Kiryukhantsev-Korneev, F.V., Novikov, A.V., Sagalova, T.B., et al., Phys. Met. Metallogr., 2017, vol. 118, pp. 1136–1146.

    CAS  Google Scholar 

  16. Wang, Q., Zhou, F., Ma, Q., et al., Appl. Surf. Sci., 2018, vol. 443, pp. 635–643.

    CAS  Google Scholar 

  17. Zhou, F., Ma, Q., Wang, Q., et al., Tribol. Int., 2017, vol. 116, pp. 19–25.

    CAS  Google Scholar 

  18. Wang, Q., Zhou, F., Zhu, L., et al., Tribol. Int., 2019, vol. 130, pp. 146–154.

    CAS  Google Scholar 

  19. Kiryukhantsev-Korneev, Ph.V., Pierson, J.F., Petrzhik, M.I., et al., Thin Solid Films, 2009, vol. 517, pp. 2675–2680.

    CAS  Google Scholar 

  20. Shtansky, D.V., Kiryukhantsev-Korneev, F.V., Sheveiko, A.N., et al., Phys. Solid State, 2005, vol. 47, no. 2, pp. 252–262.

    CAS  Google Scholar 

  21. Park, I.W., Lin, J., Moerbe, W.C., et al., Int. J. Nanomanuf., 2007, vol. 1, pp. 389–429.

    CAS  Google Scholar 

  22. Hegedus, E., Kovács, I., Pécz, B., et al., Vacuum, 2008, vol. 82, pp. 209–213.

    Google Scholar 

  23. Mallia, B., Stüber, M., and Dearnley, P., Thin Solid Films, 2013, vol. 549, pp. 216–223.

    CAS  Google Scholar 

  24. Audronis, M., Rosli, Z.M., Leyland, A., et al., Surf. Coat. Technol., 2008, vol. 202, pp. 1470–1478.

    CAS  Google Scholar 

  25. Audronis, M., Kelly, P.J., Leyland, A., and Matthews, A., Thin Solid Films, 2006, vol. 515, pp. 1511–1516.

    CAS  Google Scholar 

  26. Zhou, M., Nose, M., Makino, Y., and Nogi, K., Thin Solid Films, 2000, vol. 359, pp. 165–170.

    CAS  Google Scholar 

  27. Myoung, H., Zhang, H.-B., Park, T.-F., et al., J. Korean Inst. Surf. Eng., 2012, vol. 45, pp. 232–241.

    CAS  Google Scholar 

  28. Kiryukhantsev-Korneev, Ph.V., Horwat, D., Pierson, J.F., and Levashov, E.A., Tech. Phys. Lett., 2014, vol. 40, pp. 614–617.

    CAS  Google Scholar 

  29. Choi, H.S., Park, B., and Lee, J.J., Surf. Coat. Technol., 2007, vol. 202, pp. 982–986.

    CAS  Google Scholar 

  30. Jayaraman, S., Klein, E.J., and Yang, Y., J. Vac. Sci. Technol., A, 2005, vol. 23, pp. 631–633.

    CAS  Google Scholar 

  31. Aouadi, S.M., Namavar, F., Tobin, E., et al., J. Appl. Phys., 2002, vol. 91, pp. 1040–1045.

    CAS  Google Scholar 

  32. Kiryukhantsev-Korneev, F.V., Shirmanov, N.A., Sheveiko, A.N., et al., Russ. Eng. Res., 2010, vol. 30, pp. 909–919.

    Google Scholar 

  33. Martin, P.J. and Bendavid, A., Thin Solid Films, 2001, vol. 394, pp. 1–15.

    CAS  Google Scholar 

  34. Witke, T., Schuelke, T., Schultrich, B., et al., Surf. Coat. Technol., 2000, vol. 126, pp. 81–88.

    CAS  Google Scholar 

  35. Siemroth, P., Schülke, T., and Witke, T., Surf. Coat. Technol., 1994, vols. 68–69, pp. 314–319.

    Google Scholar 

  36. Polychronopoulou, K., Baker, M.A., Rebholz, C., et al., Surf. Coat. Technol., 2009, vol. 204, pp. 246–255.

    CAS  Google Scholar 

  37. Rother, B. and Kappl, H., Surf. Coat. Technol., 1995, vol. 73, pp. 14–17.

    CAS  Google Scholar 

  38. Kiryukhantsev-Korneev, Ph.V., Sheveyko, A.N., Kuptsov, K.A., et al, Prot. Met. Phys. Chem. Surf., 2013, vol. 49, no. 6, pp. 677–681.

    CAS  Google Scholar 

  39. Kiryukhantsev-Korneev, Ph., Sytchenko, A., Sheveyko, A., and Vorotilo, S., Coatings, 2019, vol. 9, p. 230.

    Google Scholar 

  40. Kurbatkina, V.V., Levashov, E.A., Patsera, E.I., Kochetov, N.A., and Rogachev, A.S., Int. J. Self-Propag. High-Temp. Synth., 2008, vol. 17, no. 3, pp. 1–6.

    Google Scholar 

  41. Kiryukhantsev-Korneev, F.V., Russ. J. Non-Ferrous Met., 2014, vol. 55, pp. 494–504.

    Google Scholar 

  42. Levashov, E.A., Shtansky, D.V., Kiryukhantsev-Korneev, Ph.V., et al., Russ. Metall. (Engl. Transl.), 2010, no. 10, pp. 917–935.

  43. http://www.shs.misis.ru/docs/booklet.equipment.www. shs.misis.ru.pdf.

  44. Oliveira, J.C., Oliveira, M.N., and Conde, O., Surf. Coat. Technol., 1996, vol. 80, pp. 100–104.

    CAS  Google Scholar 

  45. Krivchenko, V.A., Lopaev, D.V., Minakov, P.V., et al., Tech. Phys., 2007, vol. 52, no. 11, pp. 1471–1474.

    CAS  Google Scholar 

  46. Bachmann, P.K. and Wiechert, D.U., in Diamond and Diamond-Like Films and Coatings, Clausing, R.E., Eds., New York: Plenum Press, 1991, p. 677.

    Google Scholar 

  47. Kiryukhantsev-Korneev, F.V. and Bondarev, A.V., Phys. Met. Metallogr., 2019, vol. 120, no. 7, pp. 702–708.

    CAS  Google Scholar 

  48. Shi, L., Gu, Y., Chen, L., et al., Solid State Commun., 2003, vol. 128, pp. 5–7.

    CAS  Google Scholar 

  49. Tallant, D.R., Aselage, T.L., Campbell, A.N., and Emin, D., Phys. Rev. B, 1989, vol. 40, p. 5649.

    CAS  Google Scholar 

  50. Menaka, M., Ganguli, A.K., and Krishna, M.Gh., Surf. Coat. Technol., 2012, vol. 209, pp. 23–31.

    Google Scholar 

  51. Bunda, K.P., Mayrhofer, P.H., Neidhardt, J., et al., Surf. Coat. Technol., 2008, vol. 202, pp. 3088–3093.

    Google Scholar 

  52. Leyland, A. and Matthews, A., Wear, 2000, vol. 246, pp. 1–11.

    CAS  Google Scholar 

  53. Jahadova, V., Ding, X.-Zh., Seng, D.H.L., et al., Thin Solid Films, 2013, vol. 544, pp. 335–340.

    Google Scholar 

  54. Lin, J., Moore, J.J., Moerbe, W.C., et al., Int. J. Refract. Met. Hard Mater., 2010, vol. 28, pp. 2–14.

    CAS  Google Scholar 

  55. Miyoshi, K., Pohlchuck, B., Street, K.W., et al., Wear, 1999, vols. 225–229, pp. 65–73.

    Google Scholar 

  56. Bernoulli, D., Häfliger, K., Thorwarth, K., et al., Acta Mater., 2015, vol. 83, pp. 29–36.

    CAS  Google Scholar 

  57. Sairam, K., Sonber, J., Murthy, T.S.R.Ch., et al., Int. J. Refract. Met. Hard Mater., 2012, vol. 35, pp. 32–40.

    CAS  Google Scholar 

  58. Qi, B., Liu, B., Wu, Z.T., et al., Thin Solid Film, 2013, vol. 544, pp. 515–520.

    CAS  Google Scholar 

  59. Meng, Ch., Yang, L., Wu, Y., et al., J. Nucl. Mater., 2019, vol. 515, pp. 354–369.

    CAS  Google Scholar 

  60. Kiryukhantsev-Korneev, F.V., Sheveiko, A.N., Komarov, V.A., et al., Russ. J. Non-Ferrous Met., 2011, vol. 52, no. 3, pp. 311–318.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to M.I. Petrzhik and N.V. Shvyndina for assistance in conducting research by the nanoindentation and scanning electron microscopy methods. This work was supported by the Ministry of Education and Science of the Russian Federation, state order no. 11.7172.2017/8.9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ph. V. Kiryukhantsev-Korneev.

Additional information

Translated by D. Marinin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiryukhantsev-Korneev, P.V., Sagalova, T.B. & Bashkirov, E.A. Structure and Properties of Coatings in the Cr–B–C–N System Obtained Using a CrB2 Cathode by the Method of Pulsed Cathode-Arc Evaporation P-CAE in Ar, N2, and C2H4 Media. Prot Met Phys Chem Surf 56, 531–538 (2020). https://doi.org/10.1134/S2070205120030181

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205120030181

Navigation