Skip to main content
Log in

Heterogeneous Catalysis and Nonlinear Dynamics

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The present paper reviews recent achievements in studies of nonlinear phenomena in heterogeneous catalytic systems. The results concerning the multiplicity of steady states, reaction rate oscillations, and spatial structures on the catalyst surface were presented. The use of new physical methods in studies of reaction rate oscillations were discussed. New mathematical models of nonlinear phenomena in heterogeneous catalytic systems were analyzed, and their importance for heterogeneous catalysis was shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. Slin’ko, M.G., Osnovy i printsipy matematicheskogo modelirovaniya kataliticheskikh protsessov (Basics and Principles of Mathematical Simulation of Catalytic Processes), Novosibirsk: Boreskov Institute of Catalysis SB RAS, 2004.

  2. Boreskov, G.K., Geterogennyi kataliz v khimicheskoi promyshlennosti. Materialy Vsesoyuznogo soveshchaniya (Heterogeneous Catalysis in Chemical Industry. Materials of All-Union Workshop), Moscow: Goskhimizdat, 1955.

  3. Boreskov, G.K., Slin’ko, M.G., and Filippova, A.G., Dokl. Akad. Nauk SSSR, 1953, vol. 92, no. 2, p. 293.

    Google Scholar 

  4. Slin’ko, M.G., Beskov, V.S., and Dubyaga, N.A., Dokl. Akad. Nauk SSSR, 1972, vol. 204, no. 4, p. 1174.

    Google Scholar 

  5. Beusch, H., Fieguth, P., and Wicke, E., Chem. Ing. Tech., 1972, vol. 44, p. 445.

    CAS  Google Scholar 

  6. Belyaev, V.D., Slin’ko, M.M., Timoshenko, V.I., and Slin’ko, M.G., Kinet. Katal., 1973, vol. 14, p. 810.

    CAS  Google Scholar 

  7. Barelko, V.V. and Merzhanov, A.G., Problemy kinetiki i kataliza. Nestatsionarnye i neravnovesnye protsessy v geterogennom katalize (Problems of Kinetics and Catalysis. Stady and Non-Steady Processes in Heterogeneous Catalysis), Moscow: Nauka, 1973, vol. 17, p. 182.

  8. Imbihl, R. and Ertl, G., Chem. Rev., 1995, vol. 95, p. 697.

    CAS  Google Scholar 

  9. Slinko, M.M. and Jaeger, N.I. Oscillating Heterogeneous Catalytic Systems, Delmon, B. and Yates, J.T., Eds., Elsevier, 1994, vol. 86.

    Google Scholar 

  10. Luss, D. and Sheintuch, M., Catal. Today, 2005, vol. 105, p. 254.

    CAS  Google Scholar 

  11. Imbihl, R., Non-linear Dynamics in Catalytic Reactions. Handbook of Surface Science, Amsterdam: Elsevier, 2008.

    Google Scholar 

  12. Raj, R., Harold, M.P., and Balakotaiah, V., Chem. Eng. J., 2015, vol. 281, p. 322.

    CAS  Google Scholar 

  13. Berdau, M., Karpowicz, A., Yelenin, G.G., Christmann, K., and Block, J.H., J. Chem. Phys., 1997, vol. 106, p. 4291.

    CAS  Google Scholar 

  14. Rotermund, H.H., J. Electron Spectrosc. Relat. Phenom., 1999, vols. 98–99, p. 41.

    Google Scholar 

  15. Suchorski, Y., Spiel, C., Vogel, D., Drachsel, W., Schlőgl, R., and Rupprechter, G., ChemPhysChem, 2010, vol. 11, p. 3231.

    CAS  PubMed  Google Scholar 

  16. Vogel, D., Spiel, C., Suchorski, Y., Urich, A., Schlögl, R., and Rupprechter, G., Surf. Sci., 2011, vol. 605, p. 1999.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Spiel, C., Vogel, D., Schlögl, R., Rupprechter, G., and Suchorski, Y., Ultramicroscopy, 2015, vol. 159, p. 178.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Johánek, V., Laurin, M., Grant, A.W., Kasemo, B., Henry, C.R., and Libuda, J., Science, 2004, vol. 304, p. 1639.

    PubMed  Google Scholar 

  19. Frank-Kamenetskii, D.A., Diffuziya i teploperedacha v khimicheskoi kinetike (Diffusion and Heat Transfer in Chemical Kinetics), Moscow: Nauka, 1967.

  20. Bos, A.N.R., Hof, E., Kuper, W., and Westerterp, K.R., Chem. Eng. Sci., 1993, vol. 48, p. 1959.

    CAS  Google Scholar 

  21. Koutoufaris, I. and Koltsakis, G., Can. J. Chem. Eng., 2014, vol. 92, p. 1561.

    CAS  Google Scholar 

  22. Fuchs, S. and Hahn, T., Chem. Eng. Process., 1993, vol. 32, p. 225.

    CAS  Google Scholar 

  23. Fuchs, S., Hahn, T., and Lintz, H.G., Chem. Eng. Process., 1994, vol. 33, p. 363.

    CAS  Google Scholar 

  24. Fernandes, V.R., Bossche, M., Knudsen, J., Farstad, M.H., Gustafson, J., Venvik, H.J., Grönbeck, H., and Borg, A., ACS Catal., 2016, vol. 6, p. 4154.

    CAS  Google Scholar 

  25. Abedi, A., Hayes, R., Votsmeier, M., and Epling, W.S., Catal. Lett., 2012, vol. 142, p. 930.

    CAS  Google Scholar 

  26. Kota, A.S., Dadi, R.K., Luss, D., and Balakotaiah, V., Chem. Eng. Sci., 2017, vol. 166, p. 320.

    CAS  Google Scholar 

  27. Raj, R., Harold, M.P., and Balakotaiah, V., Chem. Eng. J., 2015, vol. 281, p. 322.

    CAS  Google Scholar 

  28. Li, J., Kumar, A., Kamasamudram, K., Currier, N., and Yezerets, A., Catal. Today, 2015, vol. 258, p. 167.

    Google Scholar 

  29. Slinko, M.M. and Jaeger, N., Appendix – Oscillatory heterogeneous catalytic systems, Catal. Today, 2005, vol. 105, p. I-II.

    Google Scholar 

  30. Bychkov, V.Yu., Tulenin, Yu.P., Slinko, M.M., Gordienko, Yu.A., and Korchak, V.N., Catal. Lett., 2018, vol. 148, p. 653.

    CAS  Google Scholar 

  31. Bychkov V.Yu., Tulenin Yu.P., Slinko M.M., Gorenberg A.Ya., Shashkin D.P., Korchak V.N., React. Kin. Mech. Catal., 2019, vol. 128, p. 587.

    CAS  Google Scholar 

  32. Bychkov, V.Yu., Tulenin, Yu.P., Gorenberg, A.Ya., and Korchak, V.N., React. Kin. Mech. Catal., 2020, vol. 129, p. 57.

    CAS  Google Scholar 

  33. Liu, Y., Fang, W.P., Weng, W.Z., and Wan, H.L., J. Mol. Catal. A: Chem., 2005, vol. 239, p. 193.

    CAS  Google Scholar 

  34. Wang, M., Weng, W., Zheng, H., Yi, X., Huang, C., and Wan, H., J. Nat. Gas Chem., 2009, vol. 18, p. 300.

    CAS  Google Scholar 

  35. Bychkov, V.Y., Tyulenin, Y.P., Slinko, M.M., and Korchak, V.N., Catal. Lett., 2007, vol. 119, p. 339.

    CAS  Google Scholar 

  36. Bychkov, V.Y., Tyulenin, Y.P., Slinko, M.M., and Korchak, V.N., Surf. Sci., 2009, vol. 603, p. 1680.

    CAS  Google Scholar 

  37. Kokkofitis, C. and Stoukides, M., J. Catal., 2006, vol. 243, p. 428.

    CAS  Google Scholar 

  38. Bychkov, V.Y., Tyulenin, Y.P., Slinko, M.M., and Korchak, V.N., Catal. Lett., 2011, vol. 141, p. 602.

    CAS  Google Scholar 

  39. Bychkov, V.Y., Tyulenin, Y.P., Slinko, M.M., Lomonosov, V.I., and Korchak, V.N., Catal. Lett., 2018, vol. 148, p. 3646.

    CAS  Google Scholar 

  40. Bychkov, V.Yu., Tyulenin, Yu.P., Slinko, M.M., and Korchak, V.N., Proc. IX Int. Conf. “Mechanisms of Catalytic Reactions”, St. Petersburg, 2012, p. 165.

  41. Barakat, T., Rooke, J.C., Chlala, D., Cousin, R., Lamonier, J.-F., Giraudon, J.-M., Casale, S., Massiani, P., Su, B.-L., and Siffert, S., Catalysts, 2018, vol. 8, p. 574.

    Google Scholar 

  42. Ouariach, O., Kacimi, M., and Ziyad, M., Appl. Catal., A, 2015, vol. 503, p. 84.

  43. Kipnis, M.A. and Volnina, E.A., Kinet. Catal., 2013, vol. 54, no. 2, p. 225.

    CAS  Google Scholar 

  44. Abu-Zied, B. M. and Schwieger, W., Appl. Catal., B, 2009, vol. 85, p. 120.

    CAS  Google Scholar 

  45. Kaucký, D., Jíŝa, K., Vondrová, A., Nováková, J., and Sobalík, Z., J. Catal., 2006, vol. 242, p. 270.

    Google Scholar 

  46. Ciambelli, P., Garufi, E., Pirone, R., Russo, G., and Santagata, F., Appl. Catal., B, 1996, vol. 8, p. 333.

    CAS  Google Scholar 

  47. Toyoshima, I. and Somorjai, G.A., Catal. Rev. Sci. Eng., 1979, vol. 19, p. 105.

    CAS  Google Scholar 

  48. König, D., Weber, W.H., Poindexter, B.D., McBride, J.R., Graham, G.W., and Otto, K., Catal. Lett., 1994, vol. 29, p. 329.

    Google Scholar 

  49. Gladky, A.Y., Ermolaev, V.K., and Parmon, V.N., Catal. Lett., 2001, vol. 77, p. 103.

    CAS  Google Scholar 

  50. Bychkov, V.Yu., Tulenin, Yu.P., Slinko, M.M., Vturina, D.N., and Korchak, V.N., Russ. J. Phys. Chem. B., 2018, vol. 12, no. 5, p. 830.

    CAS  Google Scholar 

  51. Bychkov, V.Y., Tyulenin, Y.P., Korchak, V.N., and Aptekar, E.L., Appl. Catal., A, 2006, vol. 304, p. 21.

  52. Saraev, A.A., Vinokurov, Z.S., Kaichev, V.V., Shmakov, A.N., and Bukhtiyarov, V.I., Catal. Sci. Technol., 2017, vol. 7, p. 1646.

    CAS  Google Scholar 

  53. Kaichev, V.V., Gladky, A.Y., Prosvirin, I.P., Saraev, A.A., Hävecker, M., Knop-Gericke, A., Schlögl, R., and Bukhtiyarov, V.I., Surf. Sci., 2013, vol. 609, p. 113.

    CAS  Google Scholar 

  54. Kaichev, V.V., Gladky, A.Y., Saraev, A.A., Kosolobov, S.S., Sherstyuk, O.V., and Bukhtiyarov, V.I., Top. Catal., 2020, vol. 63, p. 24.

    CAS  Google Scholar 

  55. Bychkov, V.Y., Tyulenin, Y.P., Slinko, M.M., Shashkin, D.P., and Korchak, V.N., J. Catal., 2009, vol. 267, p. 181.

    CAS  Google Scholar 

  56. Bychkov, V.Y., Tyulenin, Y.P., Slinko, M.M., Gorenberg, A.Ya., and Korchak, V.N., Catal. Lett., 2017, vol. 147, p. 2664.

    CAS  Google Scholar 

  57. Zhang, X., Hayward, D.O., and Mingos, D.M.P., Catal. Lett., 2002, vol. 83, p. 149.

    CAS  Google Scholar 

  58. Zhang, X., Lee, C.S.M., Mingos, D.M.P., and Hayward, D.O., Appl. Catal., A, 2003, vol. 248, p. 129.

  59. Gladky, A.Y., Ermolaev, V.K., and Parmon, V.N., Catal. Lett., 2001, vol. 77, p. 103.

    CAS  Google Scholar 

  60. Saraev, A.A., Cand. Sci. (Phys.–Math.) Dissertation, Novosibirsk: Boreskov Institute of Catalysis, 2016.

  61. Kaichev, V.V., Teschner, D., Saraev, A.A., Kosolobov, S.S., Gladky, A.Y., Prosvirin, I.P., Rudina, N.A., Ayupov, A.B., Blume, R., Havecker, M., Knop-Gericke, A., Schlogl, R., Latyshev, A.V., and Bukhtiyarov, V.I., J. Catal., 2016, vol. 334, p. 23.

    CAS  Google Scholar 

  62. Saraev, A.A., Kosolobov, S.S., Kaichev, V.V., and Bukhtiyarov, V.I., Kinet. Catal., 2015, vol. 56, no. 5, p. 598.

    CAS  Google Scholar 

  63. Bychkov, V.Y., Tyulenin, Y.P., Gorenberg, A.Ya., Sokolov, S., and Korchak, V.N., Appl. Catal., A, 2014, vol. 485, p. 1.

  64. Bychkov, V.Y., Tyulenin, Y.P., Slinko, M.M., Sokolov, S., and Korchak, V.N., Catal. Lett., 2017, vol. 147, p. 1019.

    CAS  Google Scholar 

  65. Ertl, G., Noble Lecture, 2007. https://www.nobelprize.org/prizes/chemistry/2007/ertl/lecture.

  66. Barroo, C., Wang, Z.-J., Schlögl, R., and Willinger, M.G., Nat. Catal. 2020, vol. 3, p. 30.

    CAS  Google Scholar 

  67. Franz, T., von Boehn, B., Marchetto, H., Borkenhagen, B., Lilienkamp, G., Daum, W., and Imbihl, R., Ultramicroscopy, 2019, vol. 200, p. 73.

    CAS  PubMed  Google Scholar 

  68. Bychkov, V.Y., Tyulenin, Y.P., Slinko, M.M., and Korchak, V.N., Surf. Sci., 2009, vol. 603, p. 1680.

    CAS  Google Scholar 

  69. Bychkov, V.Y., Tyulenin, Y.P., Slinko, M.M., and Korchak, V.N., Appl. Catal., A, 2007, vol. 321, p. 180.

  70. Kaichev, V.V., Saraev, A.A., Gladky, A.Y., Prosvirin, I.P., Blume, R., Teschner, D., Hävecker, M., Knop-Gericke, A., Schlögl, R., and Bukhtiyarov, V.I., Phys. Rev. Lett., 2017, vol. 119, p. 026001.

    CAS  PubMed  Google Scholar 

  71. http://center.chph.ras.ru/files/vb.

  72. McAdam, D.J., Geil, J.W., and Geil, G.W., J. Res. Natl. Bur. Stand., 1942, vol. 28, p. 593.

    CAS  Google Scholar 

  73. Singh, J., Nachtegaal, M., Alayon, E.M.C., Stotzel, J., and van Bokhoven, J.A., ChemCatChem, 2010, vol. 2, p. 653.

    CAS  Google Scholar 

  74. Hendriksen, B.L.M., Bobaru, S.C., and Frenken, J.W.M., Catal. Today, 2005, vol. 105, p. 234.

    CAS  Google Scholar 

  75. van Rijn, R., Balmes, O., Felici, R., Gustafson, J., Wermeille, D., Westerstrom, R., Lundgren, E., and Frenken, J.W.M., J. Phys. Chem. C, 2010, vol. 114, p. 6875.

    CAS  Google Scholar 

  76. van Rijn, R., Balmes, O., Resta, A., Wermeille, D., Westerstrom, R., Gustafson, J., Felici, R., Lundgren, E., and Frenken, J.W.M., Phys. Chem. Chem. Phys., 2011, vol. 13, p. 13167.

    CAS  PubMed  Google Scholar 

  77. Sales, B.C., Turner, J.E., and Maple, M.B., Surf. Sci., 1982, vol. 114, p. 381.

    CAS  Google Scholar 

  78. Gao, F., Wang, Y., Cai, Y., and Goodman, D.W., J. Phys. Chem. C, 2009, vol. 113, p. 174.

    CAS  Google Scholar 

  79. Gao, F., Wang, Y., and Goodman, D.W., J. Phys. Chem. C, 2010, vol. 114, p. 6874.

    CAS  Google Scholar 

  80. Zorn, K., Giorgio, S., Halwax, E., Henry, C.R., Grönbeck, H., and Rupprechter, G., J. Phys. Chem. C, 2011, vol. 115, p. 1103.

    CAS  Google Scholar 

  81. Gänzler, A.M., Casapu, M., Boubnov, A., Müller, O., Conrad, S., Lichtenberg, H., Frahm, R., and Grunwaldt, J.-D., J. Catal., 2015, vol. 328, p. 216.

    Google Scholar 

  82. Dann, E.K., Gibson, E.K., Catlow, C.R.A., Celorrio, V., Collier, P., Eralp, T., Amboage, M., Hardacre, C., Stere, C., Kroner, A., Raj, A., Rogers, S., Goguet, A., and Wells, P.P., J. Catal., 2019, vol. 373, p. 201.

    CAS  Google Scholar 

  83. Makeev, A.G., Slinko, M.M., and Luss, D., Appl. Catal., A, 2019, vol. 571, p. 127.

  84. Makeev, A.G. and Slinko, M.M., Surf. Sci., 2020, vol. 691, p. 121488.

    CAS  Google Scholar 

  85. Makeev, A.G. and Semendyaeva, N.L., Comput. Math. Math. Phys., 2009, vol. 49, p. 623.

    Google Scholar 

  86. Blomberg, S., Brackmann, C., Gustafson, J., Aldén, M., Lundgren, E., and Zetterberg, J., ACS Catal., 2015, vol. 5, p. 2028.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Blomberg, S., Zhou, J., Gustafson, J., Zetterberg, J., and Lundgren, E., J. Phys.: Condens. Matter., 2016, vol. 28, p. 453002.

    Google Scholar 

  88. Zhou, J., Pfaff, S., Lundgren, E., and Zetterberg, J., Appl. Phys. B, 2017, vol. 123, p. 87.

    Google Scholar 

  89. Makeev, A.G., Peskov, N.V., Semendyaeva, N.L., Slinko, M.M., Bychkov, V.Yu., and Korchak, V.N., Chem. Eng. Sci., 2019, vol. 207, p. 644.

    CAS  Google Scholar 

  90. Makeev, A.G., Peskov, N.V., Slinko, M.M., Bychkov, V.Yu., and Korchak, V.N., Top. Catal., 2020, vol. 63, p. 49.

    CAS  Google Scholar 

  91. Kisliuk, P., Chem. Solids, 1957, vol. 3, p. 95.

    CAS  Google Scholar 

  92. Lashina, E.A., Kaichev, V.V., Saraev, A.A., Vinokurov, Z.S., Chumakova, N.A., Chumakov, G.A., and Bukhtiyarov, V.I., J. Phys. Chem. A, 2017, vol. 121, p. 6874.

    CAS  PubMed  Google Scholar 

  93. Lashina, E.A., Kaichev, V.V., Saraev, A.A., Vinokurov, Z.S., Chumakova, N.A., Chumakov, G.A., and Bukhtiyarov, V.I., Top. Catal., 2020 (in press). https://doi.org/10.1007/s11244-019-01219-5

  94. Peskov, N.V., Slinko, M.M., Bychkov, V.Yu., and Korchak, V.N., Chem. Eng. Sci., 2012, vol. 84, p. 684.

    CAS  Google Scholar 

  95. McEwen, J.-S., Gaspard, P., de Bocarmé, T.V., and Kruse, N., J. Phys. Chem. C, 2009, vol. 113, p. 17045.

    CAS  Google Scholar 

  96. Suchorski, Y., Datler, M., Bespalov, I., Zeininger, J., Stöger-Pollach, M., Bernardi, J., Grönbeck, H., and Rupprechter, G., J. Phys. Chem. C, 2019, vol. 123, p. 4217.

    CAS  Google Scholar 

  97. Slinko, M.M., Catal. Today, 2010, vol. 153, p. 38.

    Google Scholar 

  98. Makeev, A.G., Semendyaeva, N.L., and Slinko, M.M., Chem. Eng. J., 2015, vol. 282, p. 3.

    CAS  Google Scholar 

  99. Lysak, T.M., Peskov, N.V., Slinko, M.M., Tyulenin, Yu.P., Bychkov, V.Yu., and Korchak, V.N., Chem. Eng. Sci., 2016, vol. 144, p. 7.

    CAS  Google Scholar 

  100. Makeev, A.G. and Peskov, N.V., Appl. Catal., B, 2013, vol. 132, p. 151.

    Google Scholar 

  101. Makeev, A.G., Peskov, N.V., and Hiromichi, Y., Appl. Catal., B, 2012, vol. 119, p. 273.

    Google Scholar 

Download references

Funding

This study was performed under government contract 46.13 (no. AAAA-A18-118020890105-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Slinko.

Additional information

Translated by L. Smolina

Abbreviations and notation: PEEM, photoemission electron microscopy; FIM, field ion microscopy; TOF, turnover number; TGA, thermogravimetric analysis; TPR, thermoprogrammed reaction; XRD, X-ray diffraction analysis; XPS, X-ray photoelectron spectroscopy; SEM, scanning electron microscopy; LEEM, low-energy electron microscopy; NAP, near-ambient pressure; STM, scanning tunneling microscopy; XAS, X-ray absorption spectroscopy; SXRD, surface X-ray diffraction; EXAFS, extended X-ray absorption fine structure; PM-IRAS, polarization modulation infrared absorption spectroscopy; ODE, ordinary differential equation; S.T.M., Sales–Turner–Maple mathematical model; CSTR, continuous stirred-tank reactor; 3D-RDC, reaction–diffusion–convection model including the diffusion and convective transport of particles in the reactor; PLIF, planar laser-induced fluorescence.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slinko, M.M., Makeev, A.G. Heterogeneous Catalysis and Nonlinear Dynamics. Kinet Catal 61, 495–515 (2020). https://doi.org/10.1134/S0023158420040114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158420040114

Keywords:

Navigation