Skip to main content
Log in

Kinetic Model of Catalytic Gasoline Reforming with Consideration for Changes in the Reaction Volume and Thermodynamic Parameters

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

For an industrially significant process of the catalytic reforming of gasoline, an increase in the octane number of gasoline and limitations on the concentrations of aromatic hydrocarbons and benzene are the most important problems. To solve these problems, an analysis of the reactor unit based on a detailed kinetic model of the process was proposed. In the grouped kinetic model of the catalytic reforming of gasoline, changes in the volume of the reaction mixture in the course of chemical transformations were taken into account. For the process of catalytic gasoline reforming, an algorithm was formulated and thermodynamic parameters were determined for grouped individual hydrocarbons. The inverse kinetic problem of restoring the kinetic parameters of stages was posed for the developed mathematical model. The residual functionals that take into account the experimental data on component concentrations and temperature changes during the entire process were determined. The concentrations of the group components in the catalytic reaction of gasoline reforming and the full temperature profile of the process were calculated. The results of solving the two-criterion optimization problem for a minimum concentration of aromatic hydrocarbons at a maximum octane number of the reformate based on the developed kinetic model are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Yakovlev, A.A., Akhmetov, A.F., and Pavlova, I.N., Elektron. Nauchn. Zh. Neftegazovoe Delo, 2006, no. 2, p. 32.

  2. Kondrashev, D.O. and Akhmetov, A.F., Elektron. Nauchn. Zh. Neftegazovoe Delo, 2006, no. 2, p. 34.

  3. Ismagilov, I.Z., Matus, E.V., Nefedova, D.V., Kuznetsov, V.V., Yashnik, S.A., Kerzhentsev, M.A., and Ismagilov, Z.R., Kinet. Catal., 2015, vol. 56, no. 3, p. 394.

    Article  CAS  Google Scholar 

  4. Rozovskii, A.Ya., Kipnis, M.A., Volnina, E.A., Samokhin, P.V., and Lin, G.I., Kinet. Catal., 2008, vol. 49, no. 1, p. 92.

    Article  CAS  Google Scholar 

  5. Petrov, R.V., Zirka, A.A., and Reshetnikov, S.I., Kinet. Catal. 2017, vol. 58, no. 4, p. 392.

    Article  CAS  Google Scholar 

  6. Zainullin, R.Z., Koledina, K.F., Akhmetov, A.F., and Gubaidullin, I.M., Elektron. Nauchn. Zh. Neftegazovoe Delo, 2018, no. 6, p. 78.

  7. Stijepovic, M.Z., Ostojic, A.V., Milenkovic, I., and Linke, P., Energy Fuels, 2009, no. 23, p. 83.

  8. Kravtsov, A.V., Ivanchina, E.D., Galushin, C.A., Poluboyartsev, D.S., Voropaeva, E.N., and Mel’nik, D.I., Izv. Tomskogo Politekhnicheskogo Universiteta, 2004, vol. 307, no. 1, p. 119.

    Google Scholar 

  9. Gyngazova, M.S., Kravtsov, A.V., Ivanchina, E.D., Korolenko, M.V., and Uvarkina, D.D., Katal.Prom-sti, 2010, vol. 2, no. 4, p. 374.

    Google Scholar 

  10. Dzhunusova, A.A. and Ostrovskii, N.M., Dinamika Sistem, Mekhanizmov i Mashin, 2002, no. 3, p. 18

  11. Dyusembaeva, A.A. and Vershinin, V.I., Katal. Prom-sti., 2018, no. 5, p. 70.

  12. Zagoruiko, A.N., in Khimicheskie tekhnologii funktsional’nykh materialov. Materialy V Mezhdunar. Rossiisko-Kazakhstanskoi nauchno-prakticheskoi konferentsii, posvyashchennoi 85-letiyu Kazakhskogo natsional’nogo universiteta im. al'-Farabi (Chemical Technology of Functional Materials. Proceedings of 5th Int. Russian-Kazakhstan Conference), Novosibirsk, 2019, p. 255.

  13. Klenov, O.P. and Noskov, A.S., Katal. Prom-sti., 2003, no. 2, p. 67.

  14. Zainullin, R.Z., Koledina, K.F., Akhmetov, A.F., and Gubaidullin, I.M., Kinet. Catal., 2017, vol. 58, no. 3, p. 279.

    Article  CAS  Google Scholar 

  15. Pryamye i obratnye zadachi v khimicheskoi kinetike (Direct and Inverse Problems in Chemical Kinetics) Bykov, V.I., Ed., Novosibirsk: Nauka, 1993.

  16. Semiokhin, I.A., Fizicheskaya khimiya (Physical Chemistry), Moscow: Moscow State Univ., 2001.

  17. Koledina, K.F. and Gubaidullin, I.M., Russ. J. Phys. Chem. A, 2016, vol. 90, no. 5, p. 914.

    Article  CAS  Google Scholar 

  18. Dimitrov, V.I., Prostaya kinetika (Simple Kinetics), Novosibirsk: Nauka, 1982.

  19. Fiziko-khimicheskie svoistva individual’nykh uglevodorodov (rekomendovannye znacheniya) (Physico-Chemical Properties of Individual Hydrocarbons (Recommended Values), Tatevskii, V.M., Ed., Moscow: Gostoptekhizdat, 1960, p. 263.

  20. Ramage, M.P., Graziani, K.R., and Krubeck, F.J., Chem. Eng. Sci., 1980, no. 35, p. 41.

  21. Gates, B.C., Katzer, J.R., and Schuit, G.C.A., Chemistry of Catalytic Processes, New York: McGraw-Hill, 1979, p. 464.

    Google Scholar 

  22. Smith, R., Chem. Eng. Prog., 1959, no. 55, p. 76.

  23. Taskar, U. and Riggs, J.B., AIChE J., 1997, no. 43, p. 740.

  24. Padmavathi, G. and Chaudhuri, K.K., Can. J. Chem. Eng., 1997, no. 75, p. 930.

  25. Iranshahi, D., Amiri, H., and Karimi, M., Energy Fuels, 2013, no. 27, p. 4048.

  26. Koledina, K.F., Zainullin, R.Z., Gubaidullin, I.M., and Akhmetov, A.F., Certificate of Registration of Computer Software 2019613697, 2019.

  27. Zainullin, R.Z., Gubaidullin, I.M., Akhmetov, A.F., and Koledina, K.F., Certificate of Registration of Computer Software 2019614867, 2019.

  28. Koledina, K.F., Koledin, S.N., Shchadneva, N.A., and Gubaidullin, I.M., Russ. J. Phys. Chem. A, 2017, vol. 91, no. 3, p. 444.

    Article  Google Scholar 

  29. Koledina, K.F., Koledin, S.N., Schadneva, N.A., Mayakova, Y.Yu., and Gubaydullin, I.M., React. Kinet. Mech. Catal., 2017, vol. 121, no. 2, p. 425.

    Article  CAS  Google Scholar 

  30. Nurislamova, L.F., Gubaydullin, I.M., Koledina, K.F., and Safin, R.R., React. Kinet. Mech. Catal., 2016, vol. 117, no. 1, p. 1.

    Article  CAS  Google Scholar 

  31. Attetkov, A.V., Galkin, S.V., and Zarubin, V.S., Metod Khuka-Dzhivsa. Metody optimizatsii (Hook–Jeeves Method. Optimization methods), Moscow: Bauman Moscow State Technical Univ., 2003.

  32. Deb, K., Mohan, M., and Mishra, S., Evolutionary Multi-Criterion Optimization, Faro: Springer, 2003, p. 222.

    Google Scholar 

  33. Koledina, K., Koledin, S., Karpenko, A., Gubaydullin, I., and Vovdenko, M., J. Math. Chem., 2019, vol. 57, no. 2, p. 484.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 19-71-00006) and, in part, by the Russian Foundation for Basic Research (grant no. 18-07-00341).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. F. Koledina.

Additional information

Translated by Valentin Makhlyarchuk

Abbreviations: GKM, grouped kinetic model.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaynullin, R.Z., Koledina, K.F., Gubaydullin, I.M. et al. Kinetic Model of Catalytic Gasoline Reforming with Consideration for Changes in the Reaction Volume and Thermodynamic Parameters. Kinet Catal 61, 613–622 (2020). https://doi.org/10.1134/S002315842004014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002315842004014X

Keywords:

Navigation