Skip to main content
Log in

Palladium-Phosphorus Nanoparticles as Effective Catalysts of the Chemoselective Hydrogenation of Alkynols

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The effect of the composition of the catalytic system and reaction conditions on the properties of phosphorus-modified palladium catalysts in hydrogenations of alkynols was studied. Modification with phosphorus increased the activity and turnover number of palladium catalysts in the hydrogenation of the model compound 2-methyl-3-butyn-2-ol (MBY) without any reduction in the selectivity to 2-methyl-3-butene-2-ol at 95–98% MBY conversion. The promoting effect of phosphorus on the properties of the palladium catalyst is caused not only by an increase in the particle size, but also, probably, by a change in the energy of interaction of reagents with the active sites. Hypotheses on the nature of the carriers of catalytic activity in Pd–P particles were discriminated using kinetic methods with the differential selectivity of catalytic systems as the main measured parameter under the conditions of competition between two alkynols. The hydrogenation of acetylenic alcohols involves only one of the two potentially active forms in Pd–P nanoparticles—Pd(0) clusters, whereas the hydrogenation of the resulting allyl alcohols involves both Pd(0) clusters and palladium phosphides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Vile, G., Albani, D., Almora-Barrios, N., Lopez, N., and Perez-Ramirez, J., ChemCatChem, 2016, vol. 8, p. 21.

    CAS  Google Scholar 

  2. McCue, A.J. and Anderson, J.A., Front. Chem. Sci. Eng., 2015, vol. 9, no. 2, p. 142.

    CAS  Google Scholar 

  3. Nikolaev, S.A., Smirnov, V.V., Zanaveskin, L.N., Zanaveskin, K.L., and Averyanov, V.A., Russ. Chem. Rev., 2009, vol. 78, no. 3, p. 231.

    CAS  Google Scholar 

  4. Stolarov, I.P., Yakushev, I.A., Churakov, A.V., Cherkashina, N.V., Smirnova, N.S., Khramov, E.V., Zubavichus, Y.V., Khrustalev, V.N., Markov, A.A., Klyagina, A.P., Kornev, A.B., Martynenko, V.M., Gekhman, A.E., Vargaftik, M.N., and Moiseev, I.I., Inorg. Chem., 2018, vol. 57, no. 18, p. 11482.

    CAS  PubMed  Google Scholar 

  5. Johnston, S.K., Cherkasov, N., Pérez-Barrado, E., Aho, A., Murzin, D.Y., Ibhadon, A.O., and Francesconi, M. G., Appl. Catal., A, 2017, vol. 544, p. 40.

  6. Nikoshvili, L., Bykov, A., Khudyakova, T., LaGrange, T., Héroguel, F., Luterbacher, J.S., Matveeva, V.G., Sulman, E.M., Dyson, P.J., and Kiwi-Minsker, L., Ind. Eng. Chem. Res., 2017, vol. 56, p. 45.

    Google Scholar 

  7. Maki-Arvela, P., Hajeк, I., Salmi, T., and Murzin, D.Yu., Appl. Catal., A, 2005, vol. 292, p. 1.

  8. Wu, W., Zhang, W., Long, Y., Qin, J., Wen, H., and Ma, J., J. Colloid Interface Sci., 2018, vol. 531, p. 642.

    CAS  PubMed  Google Scholar 

  9. Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment, Official J. L., 2002, vol. 37, p. 13.

  10. Crespo-Quesada, M., Yarulin, A., Jin, M., Xia, Y., and Kiwi-Minsker, L., J. Am. Chem. Soc., 2011, vol. 133, p. 12787.

    CAS  PubMed  Google Scholar 

  11. Markov, P.V., Mashkovsky, I.S., Bragina, G.O., Warn, J., Gerasimov, E.Yu., Bukhtiyarov, V.I., Stakheev, A.Yu., and Murzin, D.Yu., Chem. Eng. J., 2019, vol. 358, p. 520.

    CAS  Google Scholar 

  12. Yarulin, A.E., Crespo-Quesada, R.M., Egorova, E.V., and Kiwi-Minsker, L.L., Kinet. Catal., 2012, vol. 53, no. 2, p. 253.

    CAS  Google Scholar 

  13. Vorobyeva, E., Chen, Z., Mitchell, S., Leary, R.K., Midgley, P., Thomas, J.M., Hauert, R., Fako, E., Lopez, N., and Perez-Ramırez, J., J. Mater. Chem. A, 2017, vol. 5, p. 16393.

    CAS  Google Scholar 

  14. Okhlopkova, L.B., Cherepanova, S.V., Prosvirin, I.P., Kerzhentsev, M.A., and Ismagilov, Z.R., Appl. Catal., A, 2018, vol. 549, p. 245.

  15. Shen, L., Mao, S., Li, J., Li, M., Chen, P., Li, H., Chen, Z., and Wang, Y., J. Catal., 2017, vol. 350, p. 13.

    CAS  Google Scholar 

  16. Mashkovsky, I.S., Baeva, G.N., Stakheev, A.Y., Vargaftik, M.N., Kozitsyna, N.Y., and Moiseev, I.I., Mendeleev Commun., 2014, vol. 24, p. 355.

    CAS  Google Scholar 

  17. Shlyapin, D.A., Glyzdova, D.V., Afonasenko, T.N., Temerev, V.L., and Tsyrul’nikov, P.G., Kinet. Catal., 2019, vol. 60, no. 4, p. 446.

    CAS  Google Scholar 

  18. Guo, M., Li, H., Ren, Y., Ren, X., Yang, Q., and Li, C., ACS Catal., 2018, vol. 8, p. 6476.

    CAS  Google Scholar 

  19. Vargaftik, M.H., Kozitsyna, N.Yu., Cherkashin, N.V., Rudyi, R.I., Kochubei, D.I., Novgorodov, B.N., and Moiseev, I.I., Kinet. Catal., 1998, vol. 39, no. 6, p. 740.

    CAS  Google Scholar 

  20. Shmidt, F.K., Belykh, L.B., and Cherenkova, T.V., Kinet. Catal., 2001, vol. 42, no. 2, p. 163.

    CAS  Google Scholar 

  21. Belykh, L.B., Skripov, N.I., Belonogova, L.N., Umanets, V.A., and Schmidt, F.K., Kinet. Catal., 2010, vol. 51, no. 1, p. 42.

    CAS  Google Scholar 

  22. Skripov, N.I., Belykh, L.B., Belonogova, L.N., Umanets, V.A., Ryzhkovich, E.N., and Schmidt, F.K., Kinet. Catal., 2010, vol. 51, no. 5, p. 714.

    CAS  Google Scholar 

  23. Skripov, N.I., Belykh, L.B., Sterenchuk, T.P., Akimov, V.V., Tauson, V.L., and Schmidt, F.K., Kinet. Catal., 2017, vol. 58, no. 1, p. 34.

    CAS  Google Scholar 

  24. Belykh, L.B., Sterenchuk, T.P., Skripov, N.I., Akimov, V.V., Tauson, V.L., Romanchenko, A.S., Gvozdovskaya, K.L., Sanzhieva, K.L., and Schmidt, F.K., Kinet. Catal., 2019, vol. 60, no. 6, p. 808.

    CAS  Google Scholar 

  25. Belykh, L.B., Skripov, N.I., Sterenchuk, T.P., Schmidt, F.K., Akimov, V.V., and Tauson, V.L., Russ. J. Gen. Chem., 2016, vol. 86, no. 9, p. 2022.

    CAS  Google Scholar 

  26. Gordon, A.J. and Ford, R.A., The Chemist’s Companion: A Handbook of Practical Data, Techniques, and References, Hoboken: Wiley, 1972, p. 560.

    Google Scholar 

  27. Matthews, J.C., Nashua, N.H., and Wood, L.L., US Patent 3474464, 1969.

  28. Ott, L.S. and Finke, R.G., Coord. Chem. Rev., 2007, vol. 251, nos. 9–10, p. 1075.

    CAS  Google Scholar 

  29. Shmidt, F.K., Titova, Yu.Yu., and Belykh, L.B., Kinet. Catal., 2015, vol. 56, no. 5, p. 574.

    CAS  Google Scholar 

  30. Belykh, L.B., Titova, Yu.Yu., Umanets, V.A., and Shmidt, F.K., Russ. J. Appl. Chem., 2006, vol. 79, no. 8, p. 1271.

    CAS  Google Scholar 

  31. Tsyrul’nikov, P.G., Afonasenko, T.N., Koshcheev, S.V, and Boronin, A.I., Kinet. Catal., 2007, vol. 48, no. 5, p. 728.

    Google Scholar 

  32. Mironenko, R.M., Belskaya, O.B., Lavrenov, A.V., and Likholobov, V.A., Kinet. Catal., 2018, vol. 59, no. 3, p. 339.

    CAS  Google Scholar 

  33. Maccarrone, M.J., Lederhos, C.R., Torres, G., Betti, C., Coloma-Pascual, F., Quiroga, M.E., and Yori, J.C., Appl. Catal., A, 2012, vols. 441–442, p. 90.

  34. Vernuccio, S., Goy, R., Rohr, Ph.R., Medlock, J., and Bonrath, W., React. Chem. Eng., 2016, vol. 1, p. 445.

    CAS  Google Scholar 

  35. Carenco, S., Leyva-Perez, A., Concepciyn, P., Boissiere, C., Mezailles, N., Sanchez, C., and Corma, A., Nano Today, 2012, vol. 7, p. 21.

    CAS  Google Scholar 

  36. Oyama, S.T., Gott, T., Zhao, H., and Lee, Y.K., Catal. Today, 2009, vol. 143, nos. 1–2, p. 94.

    CAS  Google Scholar 

  37. d’Aquino, A.I., Danforth, S.J., Clinkingbeard, T.R., Ilic, B., Pullan, L., Reynolds, M.A., Murray, B.D., and Bussel, M.E., J. Catal., 2016, vol. 335, p. 204.

    Google Scholar 

  38. Semagina, N., Grasemann, M., Xanthopoulos, N., Renken, A., and Kiwi-Minsker, L., J. Catal., 2007, vol. 251, p. 213.

    CAS  Google Scholar 

  39. Crespo-Quesada, M., Grasemann, M., Semagina, N., Renken, A., and Kiwi-Minsker, L., Catal. Today, 2009, vol. 147, nos. 3–4, p. 247.

    CAS  Google Scholar 

  40. Protasova, L.N., Rebrov, E.V., Choy, K.L., Pung, S.Y., Engels, V., Cabaj, M., Wheatley, A.E.H., and Schouten, J.C., Catal. Sci. Technol., 2011, vol. 1, p. 768.

    Google Scholar 

  41. Serna, P., Concepción, P., and Corma, A., J. Catal., 2009, vol. 265, p. 19.

    CAS  Google Scholar 

  42. Schmidt, A.F., Kurokhtina, A.A., and Larina, E.V., Catal. Sci. Technol., 2014, vol. 4, p. 3439.

    CAS  Google Scholar 

  43. Schmidt, A.F., Kurokhtina, A.A., and Larina, E.V., Kinet. Catal., 2019, vol. 60, no. 5, p. 551.

    CAS  Google Scholar 

  44. Kobayashi, H., Yamauchi, M., Kitagawa, H., Kubota, Yo., Kato, K., and Takata, M., J. Am. Chem. Soc., 2008, vol. 130, p. 1818.

    CAS  PubMed  Google Scholar 

  45. Stojewski, M., Kowalska, J., and Jurczakowski, R., J. Phys. Chem. C, 2009, vol. 113, no. 9, p. 3707.

    Google Scholar 

  46. Prins, R. and Bussell, M.E., Catal Lett., 2012, vol. 142, no. 12, p. 1413.

    CAS  Google Scholar 

  47. Zhao, M., Chem. – Asian J., 2016, vol. 11, p. 461.

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was performed under the government contract in the field of research and development of the Russian Ministry of Education and Science (no. 4.9489.2017/8.9). The electronic images of the catalyst samples were obtained on the electron microscope of the Multiaccess Center, Baikal Center for Nanotechnology, Irkutsk National Research Technical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Belykh.

Additional information

Translated by L. Smolina

Abbreviations: DMF, N,N-dimethylformamide; MBY, 2-methyl-3-butyn-2-ol; MPY, 3-methyl-1-pentyn-3-ol; MBE, 2-methyl-3-butene-2-ol; MBA, 2-methylbutan-2-ol; XRD analysis, X-ray powder diffraction analysis; XPS, X-ray photoelectron spectroscopy; GLC, gas-liquid chromatography; TON, turnover number; TOF, turnover frequency.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skripov, N.I., Belykh, L.B., Sterenchuk, T.P. et al. Palladium-Phosphorus Nanoparticles as Effective Catalysts of the Chemoselective Hydrogenation of Alkynols. Kinet Catal 61, 575–588 (2020). https://doi.org/10.1134/S0023158420030209

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158420030209

Keywords:

Navigation