Skip to main content
Log in

Effect of the Oxidation Degree of a Nickel Foil Surface on Its Catalytic Activity in the Reaction of Ethylene Oxidation

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The effect of the oxidation degree of a nickel foil surface on the rate of catalytic oxidation of ethylene was studied by a pulse method at 600 and 700°C. It was shown that a reduced metallic surface demonstrated a high activity in partial ethylene oxidation, whereas a partially oxidized surface with an oxidation degree of ~24 formal O2 monolayers, in the total oxidation of C2H4. A SEM investigation has revealed that the oxidized surface was partially coated with nickel oxide nanocrystals. A further increase in the surface oxidation degree led to a continuous coverage of the Ni surface with oxide crystals and a dramatic decrease of catalytic activity. In addition, a low maximum of total ethylene oxidation was observed at 700°C in the range of surface oxidation degree of 95–135 O2 monolayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Ashok, J., Wai, M.H., and Kawi, S., ChemCatChem, 2018, vol. 10, p. 3927.

    Article  CAS  Google Scholar 

  2. Bkour, Q., Marin-Flores, O.G., Graham, T.R., Ziaei, P., Saunders, S.R., Norton, M.G., and Ha, S., Appl. Catal., A, 2017, vol. 546, p. 126.

  3. Li, J. and Lu, G., Appl. Catal., A, 2004, vol. 273, p. 163.

  4. Seo, H.O., Catalysts, 2018, vol. 8, p. 110.

    Article  Google Scholar 

  5. Bychkov, V.Yu., Krylov, O.V., and Korchak, V.N., Kinet. Catal., 2002, vol. 43, no. 1, p. 86.

    Article  CAS  Google Scholar 

  6. Simonov, M.N., Rogov, V.A., Smirnova, M.Yu., and Sadykov, V.A., Catalysts, 2017, vol. 7, p. 251.

    Article  Google Scholar 

  7. Jalama, K., Catal. Rev., 2017, vol. 59, no. 2, p. 95.

    Article  CAS  Google Scholar 

  8. Yao, Y.-F.Y. and Kummer, J.T., J. Catal., 1973, vol. 28, p. 124.

    Article  CAS  Google Scholar 

  9. Gladky, A.Yu., Kaichev, V.V., Ermolaev, V.K., Bukhtiyarov, V.I., and Parmon, V.N., Kinet. Catal., 2005, vol. 46, no. 2, p. 269.

    Article  Google Scholar 

  10. Bychkov, V.Yu., Tyulenin, Yu.P., Korchak, V.N., and Aptekar, E.L., Appl. Catal., A, 2006, vol. 30, p. 21.

  11. Bychkov, V.Yu., Tyulenin, Yu.P., Slinko, M.M., and Korchak, V.N., Catal. Lett., 2007, vol. 119, p. 339.

    Article  CAS  Google Scholar 

  12. Kaichev, V.V., Gladky, A.Yu., Prosvirin, I.P., Saraev, A.A., Hävecker, M., Knop-Gericke, A., Schlögl, R., and Bukhtiyarov, V.I., Surf. Sci., 2013, vol. 609, p. 113.

    Article  CAS  Google Scholar 

  13. Saraev, A.A., Kosolobov, S.S., Kaichev, V.V., and Bukhtiyarov, V.I., Kinet. Catal., 2015, vol. 56, no. 5, p. 598.

    Article  CAS  Google Scholar 

  14. Bychkov, V.Yu., Tulenin, Yu.P., Slinko, M.M., Lomonosov, V.I., and Korchak, V.N., Catal. Lett., 2018, vol. 148, p. 3646.

    Article  CAS  Google Scholar 

  15. Bychkov, V.Yu., Tulenin, Yu.P., Slinko, M.M., Gordienko, Yu.A., and Korchak, V.N., Catal. Lett., 2018, vol. 148, p. 653.

    Article  CAS  Google Scholar 

  16. Bychkov, V.Yu., Tyulenin, Yu.P., Slinko, M.M., and Korchak, V.N., Surf. Sci., 2009, vol. 603, p. 1680.

    Article  CAS  Google Scholar 

  17. Ustyugov, V.V., Kaichev, V.V., Lashina, E.A., Chumakova, N.A., and Bukhtiyarov, V.I., Kinet. Catal., 2016, vol. 57, no. 1, p. 113.

    Article  CAS  Google Scholar 

  18. Makeev, A.G., Peskov, N.V., Semendyaeva, N.L., Slinko, M.M., Bychkov, V.Yu., and Korchak, V.N., Chem. Eng. Sci., 2019, vol. 207, p. 644.

    Article  CAS  Google Scholar 

  19. Seo, H.O., Catalysts, 2018, vol. 8, p. 110.

    Article  Google Scholar 

  20. Mutz, B., Gänzler, A.M., Nachtegaal, M., Müller, O., Frahm, R., Kleist, W., and Grunwaldt, J.-D., Catalysts, 2017, vol. 7, p. 279.

    Article  Google Scholar 

  21. Bi, Q., Huang, X., Yin, G., Chen, T., Du, X., Cai, J., Xu, J., Liu, Z., Han, Y., and Huang, F., ChemCatChem, 2019, vol. 11, p. 1295.

    Article  CAS  Google Scholar 

  22. Heine, C., Lechner, B.A.J., Bluhm, H., and Salmeron, M., J. Am. Chem. Soc., 2016, vol. 138, p. 13246.

    Article  CAS  Google Scholar 

  23. Hu, Y.H. and Ruckenstein, E., Catal. Lett., 1995, vol. 34, p. 41.

    Article  CAS  Google Scholar 

  24. Au, C.T. and Wang, H.Y., Catal. Lett., 1996, vol. 41, p. 159.

    Article  CAS  Google Scholar 

  25. Nakagawa, K., Ikenaga, N., Kobayashi, T., and Suzuki, T., Catal. Today, 2001, vol. 64, p. 31.

    Article  CAS  Google Scholar 

  26. Garcí, V., Caldes, M.T., Joubert, O., Gautron, E., Mondrago’n, F., and Moreno, A., Catal. Today, 2010, vol. 157, p. 177.

    Article  Google Scholar 

  27. Ouyang, M., Boldrin, P., Maher, R.C., Chen, X., Liu, X., Cohen, L.F., and Brandon, N.P., Appl. Catal., B, 2019, vol. 248, p. 332.

    Article  CAS  Google Scholar 

  28. Wu, T., Yan, Q., and Wan, H., J. Mol. Catal. A: Chem., 2005, vol. 226, p. 41.

    Article  CAS  Google Scholar 

  29. Li, C., Yu, C., and Shen, S., Catal. Lett., 2000, vol. 67, p. 139.

    Article  CAS  Google Scholar 

  30. Yan, Q.G., Weng, W.Z., Wan, H.L., Toghiani, H, Toghiani, R.K., and Pittman, C.U., Jr., Appl. Catal., A, 2003, vol. 239, p. 43.

  31. Yan, Q., Toghiani, H., and White, M.G., J. Phys. Chem. C, 2007, vol. 111, p. 18646.

    Article  CAS  Google Scholar 

  32. Ouyang, M., Boldrin, P., and Brandon, N.P., ECS Trans., 2017, vol. 78, no. 1, p. 1353.

    Article  CAS  Google Scholar 

  33. McAdam, D.J., Geil, J.W., and Geil, G.W., J. Res. Natl. Bur. Stand., 1942, vol. 28, p. 593.

    Article  CAS  Google Scholar 

  34. Benson, J.E. and Boudart, M., J. Catal., 1965, vol. 4, no. 6, p. 704.

    Article  CAS  Google Scholar 

  35. Holloway, P.H., J. Vac. Sci. Technol., 1981, vol. 18, p. 653.

    Article  CAS  Google Scholar 

  36. Mitchell, D.F., Sewell, P.B., and Cohen, M., Surf. Sci., 1977, vol. 69, p. 310.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (grant no. 19-03-00096) and state assignment V.46.13, 0082-2014-007 no. AAAA-A18-11802089010503.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Bychkov.

Additional information

Translated by Valentin Makhlyarchuk

Abbreviations: XAS, X-ray absorption spectroscopy; EXAFS, extended X-ray absorption fine structure; AP-XPS, ambient pressure X-ray photoelectron spectroscopy; DRIFTS, diffuse reflectance infrared Fourier transform spectroscopy; SEM, scanning electron microscopy; TPR-H2, temperature-programmed reduction with hydrogen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bychkov, V.Y., Tulenin, Y.P., Gorenberg, A.Y. et al. Effect of the Oxidation Degree of a Nickel Foil Surface on Its Catalytic Activity in the Reaction of Ethylene Oxidation. Kinet Catal 61, 631–636 (2020). https://doi.org/10.1134/S0023158420040023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158420040023

Keywords:

Navigation