Skip to main content
Log in

Gas-Phase Dehydration of Glycerol into Acrolein in the Presence of Polyoxometalates

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The activity of catalytic systems based on polyoxometalates in the gas-phase dehydration of glycerol into acrolein has been investigated. The catalysts synthesized have been characterized using FTIR spectroscopy, X-ray phase analysis, scanning electron microscopy, and low-temperature nitrogen adsorption/desorption (BET method). It has been shown that the nature of the surface acid sites of catalysts has a significant effect on the direction of glycerol transformation. An increase in the fraction of Brønsted acid sites in the catalyst leads to an increase in the yield of acrolein. At the same time, an increase in the fraction of Lewis acid sites in the catalyst leads to an increase to the yield of acetol, which is formed through a competing route. Among the catalytic systems considered, the best results have been obtained with the silicomolybdic acid anion supported onto alumina (SiMo/A). The main patterns of the gas-phase glycerol dehydration have been studied using SiMo/A as a catalyst, and the conditions responsible for the highest yield of acrolein have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Alkhazov, T.G., Adzhamov, K.Yu., and Khanmamedova, A.K., Russ. Chem. Rev., 1982, vol. 51, p. 542.

    Article  Google Scholar 

  2. Keiko, N.A. and Voronkov, M.G., Russ. Chem. Rev., 1993, vol. 62, p. 751.

    Article  Google Scholar 

  3. Katryniok, B., Paul, S., Capron, M., and Dumeignil, F., ChemSusChem, 2009, vol. 2, p. 719.

    Article  CAS  Google Scholar 

  4. Wang, Y., Xiao, Y., and Xiao, G., Chin. J. Chem. Eng., 2019, vol. 27, p. 1536.

    Article  CAS  Google Scholar 

  5. Talebian-Kiakalaieh, A., Aishah Saidina Amin, N., and Hezaveh, H., Renewable Sustainable Energy Rev., 2014, vol. 40, p. 28.

    Article  CAS  Google Scholar 

  6. Galadima, A. and Muraza, O., J. Taiwan Inst. Chem. Eng., 2016, vol. 67, p. 29.

    Article  CAS  Google Scholar 

  7. Sun, D., Yamada, Y., Sato, S., and Ueda, W., Green Chem., 2017, vol. 19, p. 3186.

    Article  CAS  Google Scholar 

  8. Gu, Y., Cui, N., Yu, Q., Li, C., and Cui, Q., Appl. Catal., A, 2012, vols. 429–430, p. 9.

  9. Shan, J., Li, Z., Zhu, S., Liu, H., Li, J., Wang, J., and Fan, W., Catalysts, 2019, vol. 9. 121.

    Article  Google Scholar 

  10. Danov, S.M., Esipovich, A.L., Belousov, A.S., and Rogozhin, A.E., Russ. J. Appl. Chem., 2014, vol. 87, p. 461.

    Article  CAS  Google Scholar 

  11. Danov, S.M., Esipovich, A.L., Belousov, A.S., and Rogozhin, A.E., Chin. J. Chem. Eng., 2015, vol. 23, p. 1138.

    Article  CAS  Google Scholar 

  12. Alhanash, A., Kozhevnikova, E.F., and Kozhevnikov, I.V., Appl. Catal., A, 2010, vol. 378, p. 11.

  13. Liu, R., Wang, T., Liu, C., and Jin, Y., Chin. J. Catal., 2013, vol. 34, p. 2174.

    Article  CAS  Google Scholar 

  14. Thanasilp, S., Schwank, J.W., Meeyoo, V., Pengpanich, S., and Hunsom, M., J. Mol. Catal. A: Chem., 2013, vol. 380, p. 49.

    Article  CAS  Google Scholar 

  15. Liu, R., Wang, T., Cai, D., and Jin, Y., Ind. Eng. Chem. Res., 2014, vol. 53, p. 8667.

    Article  CAS  Google Scholar 

  16. Thanasilp, S., Schwank, J.W., Meeyoo, V., Pengpanich, S., and Hunsom, M., Chem. Eng. J., 2015, vol. 275, p. 113.

    Article  CAS  Google Scholar 

  17. Li, X. and Zhang, Y., ACS Catal., 2016, vol. 6, p. 2785.

    Article  CAS  Google Scholar 

  18. Suganuma, S., Hisazumi, T., Taruya, K., Tsuji, E., and Katada, N., Mol. Catal., 2018, vol. 449, p. 85.

    Article  CAS  Google Scholar 

  19. Lowell, S., Shields, J.E., Thomas, M.A., and Thommes, M., Characterization of Porous Materials and Powders: Surface Area, Pore Size and Density, Netherlands: Springer, 2004, p. 350.

    Book  Google Scholar 

  20. Barzetti, T., Selli, E., Moscotti, D., and Forni, L., J. Chem. Soc., Faraday Trans., 1996, vol. 92, p. 1401.

    Article  CAS  Google Scholar 

  21. Volkova, G.G., Budneva, A.A., Shalygin, A.S., Salanov, A.N., Petrov, R.V., Reshetnikov, S.I., and Paukshtis, E.A., Chem. Sustainable Dev., 2012, vol. 20, no. 2, vol. 189.

  22. Escribano, V.S., Garbarino, G., Finocchio, E., and Busca, G., Top. Catal., 2017, vol. 60, p. 1554.

    Article  Google Scholar 

  23. Kozhevnikov, I.V., Chem. Rev., 1998, vol. 98, p. 171.

    Article  CAS  Google Scholar 

Download references

Funding

The experimental study was supported by the Russian Foundation for Basic Research (project no. 18-33-00159), and the analysis of the catalytic systems was supported by the Ministry of Education and Science of the Russian Federation (state contract no. 10.2326.2017/PCh).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Belousov.

Additional information

Translated by Valentin Makhlyarchuk

Abbreviations: POM, polyoxometalate; HPA, heteropoly acid; HPW, phosphotungstic acid; HPMo, phosphomolybdic acid; HSiMo, silicomolybdic acid; PW, PMo, and SiMo, anions of the corresponding heteropoly acids; A, active alumina; EDS, energy-dispersive spectroscopy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belousov, A.S., Esipovich, A.L., Otopkova, K.V. et al. Gas-Phase Dehydration of Glycerol into Acrolein in the Presence of Polyoxometalates. Kinet Catal 61, 595–602 (2020). https://doi.org/10.1134/S0023158420030064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158420030064

Keywords:

Navigation