Skip to main content
Log in

Electrolytic conductivity of ionic polymers in a nonpolar solvent

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The electrolytic conductivity of two electrolytes as solutions in the nonpolar solvent, n -dodecane, as a function of concentration has been studied. One was a small molecule electrolyte (tetraalkyl cation and a highly fluorinated tetraphenylborate anion), and the other was a macromolecular electrolyte (cation-containing poly(alkyl methacrylate) chain with the same anion). Two series of the macromolecular cation were prepared: one with entirely cation-containing molecules and the other with a small proportion (10%) cation-containing and the rest nonionic. The conductivity data were qualitatively similar for all systems, which formed both single ions and triple ions. The data from the two series of macromolecular electrolytes were particularly informative to understand some recent and counterintuitive electrokinetic data for particles that were stabilized by these polymers. Reducing the proportion of cationic chains in the stabilizer of the particles was found to increase their electrophoretic mobility. In the conductivity data in this study, reducing the proportion of cationic chains in solution was found to increase the magnitude of the single-ion equilibrium constant and suppress the formation of triple ions. These data should support the development of models to understand these electrokinetic results.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.D. Morrison, Colloids Surf. A: Physicochem. Eng. Asp. 71, 1 (1993)

    Article  Google Scholar 

  2. G.N. Smith, J. Eastoe, Phys. Chem. Chem. Phys. 15, 424 (2013)

    Article  Google Scholar 

  3. R. Moritz, G. Zardalidis, H.J. Butt, M. Wagner, K. Müllen, G. Floudas, Macromolecules 47, 191 (2014)

    Article  ADS  Google Scholar 

  4. R.M. Fuoss, C.A. Kraus, J. Am. Chem. Soc. 55, 2387 (1933)

    Article  Google Scholar 

  5. D.A.J. Gillespie, J.E. Hallett, O. Elujoba, A.F. Che Hamzah, R.M. Richardson, P. Bartlett, Soft Matter 10, 566 (2014)

    Article  ADS  Google Scholar 

  6. A.V. Delgado, F. Carrique, R. Roa, E. Ruiz-Reina, Curr. Opin. Colloid Interface Sci. 24, 32 (2016)

    Article  Google Scholar 

  7. G.N. Smith, L.L.E. Mears, S.E. Rogers, S.P. Armes, Chem. Sci. 9, 922 (2018)

    Article  Google Scholar 

  8. G.N. Smith, S.L. Canning, M.J. Derry, E.R. Jones, T.J. Neal, A.J. Smith, Macromolecules 53, 3148 (2020)

    Article  ADS  Google Scholar 

  9. T. Ono, M. Ohta, K. Sada, ACS Macro Lett. 1, 1270 (2012)

    Article  Google Scholar 

  10. J. Lee, Z.L. Zhou, G. Alas, S.H. Behrens, Langmuir 31, 11989 (2015)

    Article  Google Scholar 

  11. J. Lee, Z.L. Zhou, S.H. Behrens, Langmuir 32, 4827 (2016)

    Article  Google Scholar 

  12. E.L. Michor, B.S. Ponto, J.C. Berg, Langmuir 32, 10328 (2016)

    Article  Google Scholar 

  13. N. Hiroshi, T. Naoko, Y. Masaji, S. Takaaki, K. Hiroshi, Bull. Chem. Soc. Jpn. 57, 2600 (1984)

    Article  Google Scholar 

  14. G. Hussain, A. Robinson, P. Bartlett, Langmuir 29, 4204 (2013)

    Article  Google Scholar 

  15. C. Wohlfarth, in CRC Handbook of Chemistry and Physics, 95th ed. (CRC Press, 2014--2015 (Internet Version)) Chapt. ``Permittivity (Dielectric Constant) of Liquids''

  16. H. Ohshima, Colloid Polym. Sci. 285, 1411 (2007)

    Article  Google Scholar 

  17. H. Ohshima, Curr. Opin. Colloid Interface Sci. 18, 73 (2013)

    Article  Google Scholar 

  18. H. Ohshima, J. Colloid Interface Sci. 248, 499 (2002)

    Article  ADS  Google Scholar 

  19. H. Ohshima, Colloids Surf. A: Physicochem. Eng. Asp. 222, 207 (2003)

    Article  Google Scholar 

  20. H. Ohshima, J. Colloid Interface Sci. 262, 294 (2003)

    Article  ADS  Google Scholar 

  21. H. Ohshima, J. Colloid Interface Sci. 269, 255 (2004)

    Article  ADS  Google Scholar 

  22. H. Ohshima, J. Colloid Interface Sci. 272, 503 (2004)

    Article  ADS  Google Scholar 

  23. G.N. Smith, S. van Meurs, S.P. Armes, J. Colloid Interface Sci. 577, 523 (2020)

    Article  ADS  Google Scholar 

  24. K. Fujiki, M. Kashiwagi, H. Miyamoto, A. Sonoda, J. Ichikawa, H. Kobayashi, T. Sonoda, J. Fluor. Chem. 57, 307 (1992)

    Article  Google Scholar 

  25. G.N. Smith, S.D. Finlayson, S.E. Rogers, P. Bartlett, J. Eastoe, J. Phys. Chem. Lett. 8, 4668 (2017)

    Article  Google Scholar 

  26. N. Greinert, M. Uerdingen, L. Beylage, N. Ignatyev, J.H. Wilson, M.J. Goulding, R. Kemp, A.N. Smith, P. Bartlett, P. Barthen, Particles for electrophoretic displays, Patent WO 2012/072218 A1 (2012).

  27. J. Chiefari, Y.K.B. Chong, F. Ercole, J. Krstina, J. Jeffery, T.P.T. Le, R.T.A. Mayadunne, G.F. Meijs, C.L. Moad, G. Moad et al., Macromolecules 31, 5559 (1998)

    Article  ADS  Google Scholar 

  28. K. Matyjaszewski, Macromolecules 53, 495 (2020)

    Article  ADS  Google Scholar 

  29. Q. Guo, V. Singh, S.H. Behrens, Langmuir 26, 3203 (2010)

    Article  Google Scholar 

  30. A. Goebel, K. Lunkenheimer, Langmuir 13, 369 (1997)

    Article  Google Scholar 

  31. H.F. Eicke, H. Christen, Helv. Chim. Acta 61, 2258 (1978)

    Article  Google Scholar 

  32. M. Gacek, D. Bergsman, E. Michor, J.C. Berg, Langmuir 28, 11633 (2012)

    Article  Google Scholar 

  33. K.E. Tettey, D. Lee, Soft Matter 9, 7242 (2013)

    Article  ADS  Google Scholar 

  34. A.P. Abbott, T.A. Claxton, J. Fawcett, J.C. Harper, J. Chem. Soc., Faraday Trans. 92, 1747 (1996)

    Article  Google Scholar 

  35. A.P. Abbott, G.A. Griffith, J.C. Harper, J. Chem. Soc., Faraday Trans. 93, 577 (1997)

    Article  Google Scholar 

  36. B. Endeward, P. Brant, R.D. Nielsen, M. Bernardo, K. Zick, H. Thomann, J. Phys. Chem. C 112, 7818 (2008)

    Article  Google Scholar 

  37. S.D. Finlayson, P. Bartlett, J. Chem. Phys. 145, 034905 (2016)

    Article  ADS  Google Scholar 

  38. R.M. Fuoss, F. Accascina, Electrolytic Conductance (Interscience, New York, 1959)

  39. A.K. Covington, T. Dickinson (Editors), Physical Chemistry of Organic Solvent Systems (Plenum, London, 1973)

  40. S. Boileau, P. Hemery, Electrochim. Acta 21, 647 (1976)

    Article  Google Scholar 

  41. G. Ciancaleoni, C. Zuccaccia, D. Zuccaccia, A. Macchioni, Organometallics 26, 3624 (2007)

    Article  Google Scholar 

  42. CRC, in CRC Handbook of Chemistry and Physics, 95th edn (CRC Press, 2014--2015 (Internet Version)) Chapt. ``Viscosity of liquids''

  43. M.D. Shafiq, PhD Thesis, University of Bristol (2019)

  44. F. Waggett, PhD Thesis, University of Bristol (2019)

  45. S.L. Canning, G.N. Smith, S.P. Armes, Macromolecules 49, 1985 (2016)

    Article  ADS  Google Scholar 

  46. S. Perrier, Macromolecules 50, 7433 (2017)

    Article  ADS  Google Scholar 

  47. L.S. Bartell, J. Am. Chem. Soc. 81, 3497 (1959)

    Article  Google Scholar 

  48. F.H. Allen, O. Kennard, D.G. Watson, L. Brammer, A.G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans. 2, S1 (1987)

    Article  Google Scholar 

  49. D.R. Lide, in CRC Handbook of Chemistry and Physics, edited by W.M. Haynes, 97th ed. (CRC Press, Boca Raton, 2017)

  50. M. Ricker, M. Schmidt, Makromol. Chem. 192, 679 (1991)

    Article  Google Scholar 

  51. O. Glatter, O. Kratky (Editors), Small Angle X-ray Scattering (Academic Press, London, 1982)

  52. R.K. Heenan, S.E. Rogers, D. Turner, A.E. Terry, J. Treadgold, S.M. King, Neutron News 22, 19 (2011)

    Article  Google Scholar 

  53. B. Hammouda, J. Appl. Cryst. 43, 716 (2010)

    Article  Google Scholar 

  54. B. Hammouda, J. Appl. Cryst. 43, 1474 (2010)

    Article  Google Scholar 

  55. B. Hammouda, Probing nanoscale structures ---The SANS toolbox, http://www.ncnr.nist.gov/staff/hammouda/the_SANS_toolbox.pdf

  56. N. Bjerrum, Math. Fys. Medd. K. Dans. Vidensk. Selsk. 7, 1 (1926)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory N. Smith.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, G.N. Electrolytic conductivity of ionic polymers in a nonpolar solvent. Eur. Phys. J. E 43, 52 (2020). https://doi.org/10.1140/epje/i2020-11976-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2020-11976-5

Keywords

Navigation