Skip to main content
Log in

A review on feature-mapping methods for structural optimization

  • Review Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

In this review we identify a new category of methods for implementing and solving structural optimization problems that has emerged over the last 20 years, which we propose to call feature-mapping methods. The two defining aspects of these methods are that the design is parameterized by a high-level geometric description and that features are mapped onto a non-body-fitted mesh for analysis. One motivation for using these methods is to gain better control over the geometry to, for example, facilitate imposing direct constraints on geometric features, while avoiding issues with re-meshing. The review starts by providing some key definitions and then examines the ingredients that these methods use to map geometric features onto a fixed mesh. One of these ingredients corresponds to the mechanism for mapping the geometry of a single feature onto a fixed analysis grid, from which an ersatz material or an immersed-boundary approach is used for the analysis. For the former case, which we refer to as the pseudo-density approach, a test problem is formulated to investigate aspects of the material interpolation, boundary smoothing, and numerical integration. We also review other ingredients of feature-mapping techniques, including approaches for combining features (which are required to perform topology optimization) and methods for imposing a minimum separation distance among features. A literature review of feature-mapping methods is provided for shape optimization, combined feature/free-form optimization, and topology optimization. Finally, we discuss potential future research directions for feature-mapping methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Notes

  1. The latter work seems to be a more detailed journal version of the former, hence from hereon we only reference the latter.

References

  • Adalsteinsson D, Sethian JA (1999) The fast construction of extension velocities in ss methods. J Comput Phys 148(1):2–22

    MathSciNet  MATH  Google Scholar 

  • Bai J, Zuo W (2020) Hollow structural design in topology optimization via moving morphable component method. Struct Multidiscip Optim 61(1):187–205

    Google Scholar 

  • Bakhtiarinejad M, Lee S, Joo J (2017) Component allocation and supporting frame topology optimization using global search algorithm and morphing mesh. Struct Multidiscip Optim 55(1):297–315

    MathSciNet  Google Scholar 

  • Bell B, Norato J, Tortorelli D (2012) A geometry projection method for continuum-based topology optimization of structures. In: 12th AIAA Aviation Technology, Integration, and Operations (ATIO) conference and 14th AIAA/ISSMO multidisciplinary analysis and optimization conference. https://doi.org/10.2514/6.2012-5485

  • Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5):601–620

    MATH  Google Scholar 

  • Belytschko T, Gracie R, Ventura G (2009) A review of extended/generalized finite element methods for material modeling. Modelling and Simulation in Materials Science and Engineering 17(4):043,001

    Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Multidiscip Optim 1:193–202

    Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    MathSciNet  MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Archive of Applievd Mechanics 69(9):635–654

    MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, method and applications, 2nd edn. Springer

  • Bloomenthal J, Wyvill B (1990) Interactive techniques for implicit modeling. In: ACM SIGGRAPH Computer graphics, vol 24. ACM, pp 109–116

  • Braibant V, Fleury C (1984) Shape optimal design using B-splines. Comput Methods Appl Mech Eng 44(3):247–267

    MATH  Google Scholar 

  • Bujny M, Aulig N, Olhofer M, Duddeck F (2018) Identification of optimal topologies for crashworthiness with the evolutionary level set method. International Journal of Crashworthiness 23(4):395–416

    Google Scholar 

  • Cai S, Zhang W (2015) Stress constrained topology optimization with free-form design domains. Comput Methods Appl Mech Eng 289:267–290

    MathSciNet  MATH  Google Scholar 

  • Chen J, Shapiro V, Suresh K, Tsukanov I (2007) Shape optimization with topological changes and parametric control. Int J Numer Methods Eng 71(3):313–346

    MathSciNet  MATH  Google Scholar 

  • Cheng G, Mei Y, Wang X (2006) A feature-based structural topology optimization method. In: IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials. Springer, pp 505–514

  • Cheng L, Liu J, Liang X, To AC (2018) Coupling lattice structure topology optimization with design-dependent feature evolution for additive manufactured heat conduction design. Comput Methods Appl Mech Eng 332:408–439

    MathSciNet  MATH  Google Scholar 

  • Chu S, Gao L, Xiao M, Li H (2019) Design of sandwich panels with truss cores using explicit topology optimization. Compos Struct 210:892–905

    Google Scholar 

  • Coniglio S (2019) Optimisation topologique à formalisme Eulérien et Lagrangien appliquée à la conception d’un ensemble propulsif. PhD thesis, Université de Toulouse

  • Coniglio S, Morlier J, Gogu C, Amargier R (2019) Generalized geometry projection: a unified approach for geometric feature based topology optimization. Archives of Computational Methods in Engineering. https://doi.org/10.1007/s11831-019-09362-8

  • Cui T, Sun Z, Liu C, Li L, Cui R, Guo X (2020) Topology optimization of plate structures using plate element-based moving morphable component (MMC) approach. Acta Mechanica Sinica 36 (2):412–421

    MathSciNet  Google Scholar 

  • Deng H, To AC (2020) Linear and nonlinear topology optimization design with projection-based ground structure method (P-GSM). Int J Numer Methods Eng 121(11):2437–2461

    Google Scholar 

  • Deng J, Chen W (2016) Design for structural flexibility using connected morphable components based topology optimization. Sci China Technol Sci 59(6):839–851

    Google Scholar 

  • Deng J, Pedersen CB, Chen W (2019) Connected morphable components-based multiscale topology optimization. Front Mech Eng 14(2):129–140

    Google Scholar 

  • van Dijk NP, Maute K, Langelaar M, Van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48(3):437–472

    MathSciNet  Google Scholar 

  • Du B, Yao W, Zhao Y, Chen X (2019) A moving morphable voids approach for topology optimization with closed B-splines. J Mech Design 141(8):081,401

    Google Scholar 

  • Du B, Zhao Y, Yao W, Wang X, Huo S (2020) Multiresolution isogeometric topology optimisation using moving morphable voids. Comput Model Eng Sci 122(3):1119–1140

    Google Scholar 

  • Dunning PD (2018) Minimum length-scale constraints for parameterized implicit function based topology optimization. Structural and Multidisciplinary Optimization 58(1):155–169. https://doi.org/10.1007/s00158-017-1883-1

    Article  MathSciNet  Google Scholar 

  • Eschenauer HA, Kobelev VV, Schumacher A (1994) Bubble method for topology and shape optimization of structures. Struct Optim 8(1):42–51

    Google Scholar 

  • Gai Y, Zhu X, Zhang YJ, Hou W, Hu P (2020) Explicit isogeometric topology optimization based on moving morphable voids with closed b-spline boundary curves. Struct Multidiscip Optim 61(3):963–982

    MathSciNet  Google Scholar 

  • Gao HH, Zhu JH, Zhang WH, Zhou Y (2015) An improved adaptive constraint aggregation for integrated layout and topology optimization. Comput Methods Appl Mech Eng 289:387– 408

    MathSciNet  MATH  Google Scholar 

  • Garcia MJ, Gonzalez CA (2004) Shape optimisation of continuum structures via evolution strategies and fixed grid finite element analysis. Struct Multidiscip Optim 26(1-2):92–98

    Google Scholar 

  • García-Ruíz M, Steven G (1999) Fixed grid finite elements in elasticity problems. Eng Comput 16(2):145–164. https://doi.org/10.1108/02644409910257430

    Article  MATH  Google Scholar 

  • Guest JK, Zhu M (2012) Casting and milling restrictions in topology optimization via projection-based algorithms. In: ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, pp 913–920

  • Guo X, Ni C, Cheng G, Du Z (2012) Some symmetry results for optimal solutions in structural optimization. Struct Multidiscip Optim 46(5):631–645

    MathSciNet  MATH  Google Scholar 

  • Guo X, Du Z, Cheng G, Ni C (2013) Symmetry properties in structural optimization: some extensions. Struct Multidiscip Optim 47(6):783–794

    MATH  Google Scholar 

  • Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically - a new moving morphable components based framework. J Appl Mech 81(8):081,009

    Google Scholar 

  • Guo X, Zhang W, Zhang J, Yuan J (2016) Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput Methods Appl Mech Eng 310:711–748

    MathSciNet  MATH  Google Scholar 

  • Guo X, Zhou J, Zhang W, Du Z, Liu C, Liu Y (2017) Self-supporting structure design in additive manufacturing through explicit topology optimization. Comput Methods Appl Mech Eng 323:27–63

    MathSciNet  MATH  Google Scholar 

  • Ha SH, Guest JK (2014) Optimizing inclusion shapes and patterns in periodic materials using discrete object projection. Struct Multidiscip Optim 50(1):65–80

    Google Scholar 

  • Haftka RT, Grandhi RV (1986) Structural shape optimization: a survey. Comput Methods Appl Mech Eng 57(1):91–106

    MathSciNet  MATH  Google Scholar 

  • Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng 193(33-35):3523–3540

    MathSciNet  MATH  Google Scholar 

  • Haslinger J, Mäkinen R (2003) Introduction to shape optimization: theory, vol 7. SIAM

  • Hoang VN, Jang GW (2017) Topology optimization using moving morphable bars for versatile thickness control. Comput Methods Appl Mech Eng 317:153–173

    MathSciNet  MATH  Google Scholar 

  • Hoang VN, Nguyen NL, Nguyen-Xuan H (2020a) Topology optimization of coated structure using moving morphable sandwich bars. Struct Multidiscip Optim 61(2):491–506

  • Hoang VN, Nguyen NL, Tran P, Qian M, Nguyen-Xuan H (2020b) Adaptive concurrent topology optimization of cellular composites for additive manufacturing. JOM 72(6):2378–2390

  • Hou W, Gai Y, Zhu X, Wang X, Zhao C, Xu L, Jiang K, Hu P (2017) Explicit isogeometric topology optimization using moving morphable components. Comput Methods Appl Mech Eng 326:694–712

    MathSciNet  MATH  Google Scholar 

  • Imam MH (1982) Three-dimensional shape optimization. Int J Numer Methods Eng 18(5):661–673

    MATH  Google Scholar 

  • Kang Z, Wang Y (2013) Integrated topology optimization with embedded movable holes based on combined description by material density and level sets. Comput Methods Appl Mech Eng 255:1–13

    MathSciNet  MATH  Google Scholar 

  • Kasolis F, Wadbro E, Berggren M (2012) Fixed-mesh curvature-parameterized shape optimization of an acoustic horn. Struct Multidiscip Optim 46(5):727–738

    MATH  Google Scholar 

  • Kazemi H, Vaziri A, Norato JA (2018) Topology optimization of structures made of discrete geometric components with different materials. J Mech Design 140(11):111,401

    Google Scholar 

  • Kazemi H, Vaziri A, Norato J (2019) Topology optimization of multi-material lattices for maximal bulk modulus. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol 59186. American Society of Mechanical Engineers, pp V02AT03A052

  • Kazemi H, Vaziri A, Norato JA (2020) Multi-material topology optimization of lattice structures using geometry projection. Comput Methods Appl Mech Eng 363:112,895

    MathSciNet  MATH  Google Scholar 

  • Kim DH, Lee SB, Kwank BM, Kim HG, Lowther DA (2008) Smooth boundary topology optimization for electrostatic problems through the combination of shape and topological design sensitivities. IEEE Trans Magn 44(6):1002–1005

    Google Scholar 

  • Lang C, Makhija D, Doostan A, Maute K (2014) A simple and efficient preconditioning scheme for Heaviside enriched XFEM. Comput Mech 54(5):1357–1374

    MathSciNet  MATH  Google Scholar 

  • Le C, Bruns T, Tortorelli D (2011) A gradient-based, parameter-free approach to shape optimization. Comput Methods Appl Mech Eng 200(9):985–996

  • Lee S, Kwak BM (2008) Smooth boundary topology optimization for eigenvalue performance and its application to the design of a flexural stage. Eng Optim 40(3):271–285

    MathSciNet  Google Scholar 

  • Lee SB, Kwak BM, Kim IY (2007) Smooth boundary topology optimization using B-spline and hole generation. International Journal of CAD/CAM 7(1):11–20

    Google Scholar 

  • Lei X, Liu C, Du Z, Zhang W, Guo X (2019) Machine learning-driven real-time topology optimization under moving morphable component-based framework. J Appl Mech 86(1):011,004

    Google Scholar 

  • Li B, Liu H, Zheng S (2018) Multidisciplinary topology optimization for reduction of sloshing in aircraft fuel tanks based on SPH simulation. Struct Multidiscip Optim 58(4):1719–1736

    MathSciNet  Google Scholar 

  • Li B, Xuan C, Liu G, Hong J (2019) Generating constructal networks for area-to-point conduction problems via moving morphable components approach. J Mech Design 141(5):051,401

    Google Scholar 

  • Li L, Wang MY, Wei P (2012) XFEM Schemes for level set based structural optimization. Frontiers of Mechanical Engineering 7(4):335–356

    Google Scholar 

  • Li Y, Wei P, Ma H (2017) Integrated optimization of heat-transfer systems consisting of discrete thermal conductors and solid material. Int J Heat Mass Transfer 113:1059–1069

    Google Scholar 

  • Lian R, Jing S, He Z, Shi Z (2020) Geometric boundary feature extraction method based on moving morphable components (MMC) for topology optomization results. In: 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), IEEE, vol 1, pp 2299–2303

  • Lin HY, Rayasam M, Subbarayan G (2015) ISOCOMP: Unified geometric and material composition for optimal topology design. Struct Multidiscip Optim 51(3):687–703

    MathSciNet  Google Scholar 

  • Liu C, Zhu Y, Sun Z, Li D, Du Z, Zhang W, Guo X (2018) An efficient moving morphable component (MMC)-based approach for multi-resolution topology optimization. Struct Multidiscip Optim 58(6):2455–2479

    MathSciNet  Google Scholar 

  • Liu D, Du J (2019) A moving morphable components based shape reconstruction framework for electrical impedance tomography. IEEE Trans Med Imag 38(12):2937–2948

    Google Scholar 

  • Liu J, Ma Y (2016) A survey of manufacturing oriented topology optimization methods. Adv Eng Softw 100:161–175

    Google Scholar 

  • Liu J, Ma YS (2015) 3d level-set topology optimization: a machining feature-based approach. Structural and Multidisciplinary Optimization 52(3):563–582

    MathSciNet  Google Scholar 

  • Liu J, Gaynor AT, Chen S, Kang Z, Suresh K, Takezawa A, Li L, Kato J, Tang J, Wang CC et al (2018b) Current and future trends in topology optimization for additive manufacturing. Struct Multidiscip Optim 57(6):2457–2483

  • Liu P, Kang Z (2018) Integrated topology optimization of multi-component structures considering connecting interface behavior. Comput Methods Appl Mech Eng 341:851–887

    MathSciNet  MATH  Google Scholar 

  • Liu T, Wang S, Li B, Gao L (2014) A level-set-based topology and shape optimization method for continuum structure under geometric constraints. Struct Multidiscip Optim 50(2):253–273

    MathSciNet  Google Scholar 

  • Lohan DJ, Dede EM, Allison JT (2017) Topology optimization for heat conduction using generative design algorithms. Struct Multidiscip Optim 55(3):1063–1077

    MathSciNet  Google Scholar 

  • Makhija D, Maute K (2014) Numerical instabilities in level set topology optimization with the extended finite element method. Struct Multidiscip Optim 49(2):185–197

    MathSciNet  Google Scholar 

  • Mei Y, Wang X, Cheng G (2008) A feature-based topological optimization for structure design. Adv Eng Softw 39(2):71–87

    Google Scholar 

  • Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150

    MathSciNet  MATH  Google Scholar 

  • Moës N, Cloirec M, Cartraud P, Remacle JF (2003) A computational approach to handle complex microstructure geometries. Comput Methods Appl Mech Eng 192(28-30):3163–3177

    MATH  Google Scholar 

  • Najafi AR, Safdari M, Tortorelli DA, Geubelle PH (2015) A gradient-based shape optimization scheme using an interface-enriched generalized fem. Comput Methods Appl Mech Eng 296:1–17

    MathSciNet  MATH  Google Scholar 

  • Nguyen TH, Paulino GH, Song J, Le CH (2010) A computational paradigm for multiresolution topology optimization (MTOP). Struct Multidiscip Optim 41(4):525–539

  • Niu B, Wadbro E (2019) On equal-width length-scale control in topology optimization. Struct Multidiscip Optim 59(4):1321– 1334

    Google Scholar 

  • Noël L, Duysinx P (2017) Shape optimization of microstructural designs subject to local stress constraints within an XFEM-level set framework. Struct Multidiscip Optim 55(6):2323–2338

    MathSciNet  Google Scholar 

  • Noël L, Miegroet LV, Duysinx P (2016) Analytical sensitivity analysis using the extended finite element method in shape optimization of bimaterial structures. Int J Numer Methods Eng 107(8):669– 695

    MathSciNet  MATH  Google Scholar 

  • Norato J, Haber R, Tortorelli D, Bendsøe MP (2004) A geometry projection method for shape optimization. International Journal for Numerical Methods in Engineering 60(14):2289–2312

    MathSciNet  MATH  Google Scholar 

  • Norato J, Bell B, Tortorelli D (2015) A geometry projection method for continuum-based topology optimization with discrete elements. Comput Methods Appl Mech Eng 293:306–327

    MathSciNet  MATH  Google Scholar 

  • Norato JA (2018) Topology optimization with supershapes. Struct Multidiscip Optim 58(2):415–434

    MathSciNet  Google Scholar 

  • Overvelde JT (2012) The moving node approach in topology optimization. Master’s thesis, Delft University of Technology

  • Pollini N, Amir O (2020) Mixed projection-and density-based topology optimization with applications to structural assemblies. Struct Multidiscip Optim 61(2):687–710

    MathSciNet  Google Scholar 

  • Qian X (2013) Topology optimization in B-spline space. Comput Methods Appl Mech Eng 265:15–35

    MathSciNet  MATH  Google Scholar 

  • Qian Z, Ananthasuresh G (2004) Optimal embedding of rigid objects in the topology design of structures. Mech Based Design Struct Mach 32(2):165–193

    Google Scholar 

  • Raponi E, Bujny M, Olhofer M, Aulig N, Boria S, Duddeck F (2019) Kriging-assisted topology optimization of crash structures. Comput Methods Appl Mech Eng 348:730–752

    MathSciNet  MATH  Google Scholar 

  • Rozvany GI (2011) On symmetry and non-uniqueness in exact topology optimization. Struct Multidiscip Optim 43(3):297–317

    MathSciNet  MATH  Google Scholar 

  • Rozvany GI, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4(3-4):250–252

    Google Scholar 

  • Saxena A (2011) Are circular shaped masks adequate in adaptive mask overlay topology synthesis method? J Mech Design 133(1):011,001

    Google Scholar 

  • Seo YD, Kim HJ, Youn SK (2010) Isogeometric topology optimization using trimmed spline surfaces. Comput Methods Appl Mech Eng 199(49-52):3270–3296

    MathSciNet  MATH  Google Scholar 

  • Shan P (2008) Optimal embedding objects in the topology design of structure. Master thesis, Dalian University of Technology, (in Chinese)

  • Shapiro V (2002) Solid modeling. Handbook of computer aided geometric design 20:473–518

    MathSciNet  Google Scholar 

  • Shapiro V (2007) Semi-analytic geometry with R-functions. ACTA numerica 16:239–303

    MathSciNet  MATH  Google Scholar 

  • Sharma A (2017) Advances in design and optimization using immersed boundary methods. Phd Thesis, University of Colorado Boulder

  • Sharma A, Villanueva H, Maute K (2017) On shape sensitivities with Heaviside-enriched XFEM. Struct Multidiscip Optim 55(2):385–408

    MathSciNet  Google Scholar 

  • Sharpe C, Seepersad CC, Watts S, Tortorelli D (2018) Design of mechanical metamaterials via constrained Bayesian optimization. In: ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, pp V02AT03A029–V02AT03A029

  • Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48 (6):1031–1055

    MathSciNet  Google Scholar 

  • Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067

    MathSciNet  Google Scholar 

  • Smith H, Norato JA (2020) A MATLAB code for topology optimization using the geometry projection method. Structural and Multidisciplinary Optimization. https://doi.org/10.1007/s00158-020-02552-0

  • Smith HA, Norato J (2019a) A geometry projection method for the design exploration of wing-box structures. In: AIAA Scitech 2019 forum, p 2353

  • Smith HA, Norato JA (2019b) Geometric constraints for the topology optimization of structures made of primitives. In: SAMPE Conference proceedings. Charlotte. https://doi.org/10.33599/nasampe/s.19.1518

  • Sokolowski J, Zolesio JP (1992) Introduction to shape optimization. In: Introduction to shape optimization. Springer, pp 5–12

  • Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62(14):2009–2027

    MATH  Google Scholar 

  • Stolpe M (2010) On some fundamental properties of structural topology optimization problems. Struct Multidiscip Optim 41(5):661–670

    MATH  Google Scholar 

  • Stolpe M (2016) Truss optimization with discrete design variables: a critical review. Struct Multidiscip Optim 53(2):349–374

    MathSciNet  Google Scholar 

  • Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscip Optim 22(2):116–124

    Google Scholar 

  • Sun J (2020) Topology optimization for removing internal resonances of a rotating thin plate. J Sound Vibr 480:115420. https://doi.org/10.1016/j.jsv.2020.115420

    Article  Google Scholar 

  • Sun J, Tian Q, Hu H (2018a) Topology optimization of a three-dimensional flexible multibody system via moving morphable components. Journal of Computational and Nonlinear Dynamics 13(2):021,010

  • Sun J, Tian Q, Hu H, Pedersen NL (2018b) Simultaneous topology and size optimization of a 3d variable-length structure described by the ale–ancf. Mech Mach Theory 129:80–105

  • Sun J, Tian Q, Hu H, Pedersen NL (2018c) Topology optimization of a flexible multibody system with variable-length bodies described by ALE–ANCF. Nonlinear Dynamics 93(2):413–441

  • Sun J, Tian Q, Hu H, Pedersen NL (2019) Topology optimization for eigenfrequencies of a rotating thin plate via moving morphable components. J Sound Vib 448:83–107

    Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes-a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    MathSciNet  MATH  Google Scholar 

  • Tahhan M (2019) Topology optimization of space frames via geometry projection. Master’s thesis, University of Connecticut

  • Takalloozadeh M, Yoon GH (2017) Implementation of topological derivative in the moving morphable components approach. Finite Elem Anal Des 134:16–26

    Google Scholar 

  • Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. International Journal for Numerical Methods in Engineering 58(9):1321– 1346

    MATH  Google Scholar 

  • Tröltzsch F (2010) Optimal control of partial differential equations: theory, methods, and applications, vol 112. American Mathematical Soc

  • Van Miegroet L, Duysinx P (2007) Stress concentration minimization of 2d filets using x-FEM and level set description. Struct Multidiscip Optim 33(4-5):425–438

    Google Scholar 

  • Villanueva CH, Maute K (2014) Density and level set-XFEM schemes for topology optimization of 3-d structures. Comput Mech 54(1):133–150

    MathSciNet  MATH  Google Scholar 

  • Wall WA, Frenzel MA, Cyron C (2008) Isogeometric structural shape optimization. Comput Methods Appl Mech Eng 197(33):2976–2988

    MathSciNet  MATH  Google Scholar 

  • Wang F, Jensen JS, Sigmund O (2012) High-performance slow light photonic crystal waveguides with topology optimized or circular-hole based material layouts. Photonics and Nanostructures-Fundamentals and Applications 10(4):378–388

    Google Scholar 

  • Wang F, Lazarov BS, Sigmund O, Jensen JS (2014a) Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems. Comput Methods Appl Mech Eng 276:453–472

  • Wang MY, Zong H, Ma Q, Tian Y, Zhou M (2019a) Cellular level set in B-splines (CLIBS): a method for modeling and topology optimization of cellular structures. Comput Methods Appl Mech Eng 349:378–404

  • Wang N, Yang Y (2009) Structural design optimization subjected to uncertainty using fat Bezieŕ curve. Comput Methods Appl Mech Eng 199(1-4):210–219

    MATH  Google Scholar 

  • Wang R, Zhang X, Zhu B (2019b) Imposing minimum length scale in moving morphable component MMC-based topology optimization using an effective connection status (ECS) control method. Comput Methods Appl Mech Eng 351:667–693

  • Wang Y, Luo Z, Zhang X, Kang Z (2014b) Topological design of compliant smart structures with embedded movable actuators. Smart Materials and Structures 23(4):045,024

  • Watts S, Tortorelli DA (2017) A geometric projection method for designing three-dimensional open lattices with inverse homogenization. Int J Numer Methods Eng 112(11):1564–1588

    MathSciNet  Google Scholar 

  • Wei P, Wang MY, Xing X (2010) A study on x-FEM in continuum structural optimization using a level set model. Comput Aided Des 42(8):708–719

    Google Scholar 

  • Wein F, Stingl M (2018) A combined parametric shape optimization and ersatz material approach. Struct Multidiscip Optim 57(3):1297–1315

    MathSciNet  Google Scholar 

  • Weiss BM, Hamel JM, Ganter MA, Storti DW (2018) Data-driven additive manufacturing constraints for topology optimization. In: ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol 2A. American Society of Mechanical Engineers, p V02AT03A031

  • Wormser M, Wein F, Stingl M, Körner C (2017) Design and additive manufacturing of 3d phononic band gap structures based on gradient based optimization. Materials 10(10):1125

    Google Scholar 

  • Xia L, Zhu J, Zhang W (2012a) Sensitivity analysis with the modified Heaviside function for the optimal layout design of multi-component systems. Comput Methods Appl Mech Eng 241:142–154

  • Xia L, Zhu J, Zhang W (2012b) A superelement formulation for the efficient layout design of complex multi-component system. Struct Multidiscip Optim 45(5):643–655

  • Xia L, Zhu J, Zhang W, Breitkopf P (2013) An implicit model for the integrated optimization of component layout and structure topology. Comput Methods Appl Mech Eng 257:87–102

    MathSciNet  MATH  Google Scholar 

  • Xian Y, Rosen DW (2020) Morphable components topology optimization for additive manufacturing. Struct Multidiscip Optim 62(1):19–39. https://doi.org/10.1007/s00158-019-02466-6

    Article  Google Scholar 

  • Xie X, Wang S, Xu M, Wang Y (2018) A new isogeometric topology optimization using moving morphable components based on R-functions and collocation schemes. Comput Methods Appl Mech Eng 339:61–90

    MathSciNet  MATH  Google Scholar 

  • Xie X, Zheng H, Jonckheere S, Desmet W (2019) Explicit and efficient topology optimization of frequency-dependent damping patches using moving morphable components and reduced-order models. Comput Methods Appl Mech Eng 355:591–613

    MathSciNet  MATH  Google Scholar 

  • Xie X, Wang S, Xu M, Jiang N, Wang Y (2020a) A hierarchical spline based isogeometric topology optimization using moving morphable components. Comput Methods Appl Mech Eng 360:112,696

  • Xie X, Wang S, Ye M, Xia Z, Zhao W, Jiang N, Xu M (2020b) Isogeometric topology optimization based on energy penalization for symmetric structure. Front Mech Engi 15(1):100–122

  • Xue R, Liu C, Zhang W, Zhu Y, Tang S, Du Z, Guo X (2019) Explicit structural topology optimization under finite deformation via moving morphable void (MMV) approach. Comput Methods Appl Mech Eng 344:798–818

    MathSciNet  MATH  Google Scholar 

  • Yan S, Wang F, Sigmund O (2018) On the non-optimality of tree structures for heat conduction. Int J Heat Mass Transfer 122:660–680

    Google Scholar 

  • Yazid A, Abdelkader N, Abdelmadjid H (2009) A state-of-the-art review of the x-FEM for computational fracture mechanics. Appl Math Model 33(12):4269–4282

    MathSciNet  MATH  Google Scholar 

  • Yu M, Ruan S, Wang X, Li Z, Shen C (2019) Topology optimization of thermal–fluid problem using the MMC-based approach. Struct Multidiscip Optim 60(1):151–165

    MathSciNet  Google Scholar 

  • Zhang J, Zhang W, Zhu J, Xia L (2012) Integrated layout design of multi-component systems using XFEM and analytical sensitivity analysis. Comput Methods Appl Mech Eng 245:75–89

    MathSciNet  MATH  Google Scholar 

  • Zhang S, Norato JA (2017) Optimal design of panel reinforcements with ribs made of plates. J Mech Design 139(8):081,403

    Google Scholar 

  • Zhang S, Norato JA (2018) Finding better local optima in topology optimization via tunneling. In: ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, pp V02BT03A014–V02BT03A014

  • Zhang S, Norato JA, Gain AL, Lyu N (2016a) A geometry projection method for the topology optimization of plate structures. Struct Multidiscip Optim 54(5):1173–1190

  • Zhang S, Gain AL, Norato JA (2017a) Stress-based topology optimization with discrete geometric components. Comput Methods Appl Mech Eng 325:1–21

  • Zhang S, Gain AL, Norato JA (2018a) A geometry projection method for the topology optimization of curved plate structures with placement bounds. Int J Numer Methods Eng 114(2):128–146

  • Zhang S, Gain AL, Norato JA (2020a) Adaptive mesh refinement for topology optimization with discrete geometric components. Comput Methods Appl Mech Eng 364:112,930

  • Zhang W, Zhu J (2006) A new finite-circle family method for optimal multi-component packing design. WCCM VII, Los Angeles

    Google Scholar 

  • Zhang W, Xia L, Zhu J, Zhang Q (2011) Some recent advances in the integrated layout design of multicomponent systems. J Mech Design 133(10):104,503

    Google Scholar 

  • Zhang W, Zhong W, Guo X (2015) Explicit layout control in optimal design of structural systems with multiple embedding components. Comput Methods Appl Mech Eng 290:290–313

    MathSciNet  MATH  Google Scholar 

  • Zhang W, Li D, Zhang J, Guo X (2016b) Minimum length scale control in structural topology optimization based on the moving morphable components (MMC) approach. Comput Methods Appl Mech Eng 311:327–355

  • Zhang W, Yuan J, Zhang J, Guo X (2016c) A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model. Struct Multidiscip Optim 53(6):1243–1260

  • Zhang W, Chen J, Zhu X, Zhou J, Xue D, Lei X, Guo X (2017b) Explicit three dimensional topology optimization via moving morphable void (MMV) approach. Comput Methods Appl Mech Eng 322:590–614

  • Zhang W, Li D, Yuan J, Song J, Guo X (2017c) A new three-dimensional topology optimization method based on moving morphable components (MMCs). Comput Mech 59(4):647– 665

  • Zhang W, Yang W, Zhou J, Li D, Guo X (2017d) Structural topology optimization through explicit boundary evolution. J Appl Mech 84(1):011,011

  • Zhang W, Zhao L, Gao T, Cai S (2017e) Topology optimization with closed B-splines and Boolean operations. Comput Methods Appl Mech Eng 315:652–670

  • Zhang W, Zhou J, Zhu Y, Guo X (2017f) Structural complexity control in topology optimization via moving morphable component (MMC) approach. Struct Multidiscip Optim 56(3):535–552

  • Zhang W, Zhou Y, Zhu J (2017g) A comprehensive study of feature definitions with solids and voids for topology optimization. Comput Methods Appl Mech Eng 325:289–313

  • Zhang W, Li D, Zhou J, Du Z, Li B, Guo X (2018b) A moving morphable void (MMV)-based explicit approach for topology optimization considering stress constraints. Comput Methods Appl Mech Eng 334:381–413

  • Zhang W, Liu Y, Du Z, Zhu Y, Guo X (2018c) A moving morphable component based topology optimization approach for rib-stiffened structures considering buckling constraints. J Mech Design 140 (11):111,404

  • Zhang W, Song J, Zhou J, Du Z, Zhu Y, Sun Z, Guo X (2018d) Topology optimization with multiple materials via moving morphable component (MMC) method. Int J Numer Methods Eng 113 (11):1653–1675

  • Zhang W, Jiang S, Liu C, Li D, Kang P, Youn SK, Guo X (2020b) Stress-related topology optimization of shell structures using IGA/TSA-based moving morphable void (MMV) approach. Comput Methods Appl Mech Eng 366:113,036

  • Zhang W, Li D, Kang P, Guo X, Youn SK (2020c) Explicit topology optimization using IGA-based moving morphable void (MMV) approach. Comput Methods Appl Mech Eng 360:112,685

  • Zhou M, Wang MY (2013) Engineering feature design for level set based structural optimization. Comput Aided Des 45(12):1524–1537

    MathSciNet  Google Scholar 

  • Zhou Y, Zhang W, Zhu J, Xu Z (2016) Feature-driven topology optimization method with signed distance function. Comput Methods Appl Mech Eng 310:1–32

    MathSciNet  MATH  Google Scholar 

  • Zhou Y, Zhang W, Zhu J (2019) Concurrent shape and topology optimization involving design-dependent pressure loads using implicit B-spline curves. Int J Numer Methods Eng 118(9):495–518

    MathSciNet  Google Scholar 

  • Zhu B, Chen Q, Wang R, Zhang X (2018) Structural topology optimization using a moving morphable component-based method considering geometrical nonlinearity. J Mech Des 140(8):081,403

    Google Scholar 

  • Zhu J, Zhang W, Beckers P, Chen Y, Guo Z (2008) Simultaneous design of components layout and supporting structures using coupled shape and topology optimization technique. Struct Multidiscip Optim 36(1):29–41

    MathSciNet  MATH  Google Scholar 

  • Zhu JH, Gao HH, Zhang WH, Zhou Y (2015) A multi-point constraints based integrated layout and topology optimization design of multi-component systems. Struct Multidiscip Optim 51(2):397–407

    Google Scholar 

  • Zhu JH, Guo WJ, Zhang WH, Liu T (2017) Integrated layout and topology optimization design of multi-frame and multi-component fuselage structure systems. Struct Multidiscip Optim 56(1):21– 45

    MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank Dr. Lukas Pflug from the Department of Mathematics at the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany, for fruitful discussion and support.

The initiative for this review goes back to critical yet constructive comments by Prof. Kurt Maute, from the University of Colorado Boulder, USA.

We also thank Prof. Horea Ilies from the University of Connecticut, USA, for guidance and insight into some of the geometric aspects of this work.

The first author acknowledges support by Deutsche Forschungsgemeinschaft (DFG) in the framework of the collaborative research center CRC 814 (subproject C2). The third author thanks the support of the US National Science Foundation, award CMMI-1634563.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julián A. Norato.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Ming Zhou

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Replication of results

This review paper does not introduce any new methodology, and to replicate results of the different feature-mapping techniques discussed here, we refer the reader to the original works. The code to solve the simple test problems of Sections 3 and 4.4 is available by request from the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wein, F., Dunning, P.D. & Norato, J.A. A review on feature-mapping methods for structural optimization. Struct Multidisc Optim 62, 1597–1638 (2020). https://doi.org/10.1007/s00158-020-02649-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-020-02649-6

Keywords

Navigation