Skip to main content
Log in

Micrometeoroids: the Flux on the Moon and a Source of Volatiles

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

One of the probable sources of water and other volatiles, forming ice deposits in the shadowed polar regions of the Moon, is cosmic matter delivered by comets and asteroids, as well as by cosmic dust. In this connection, we estimated the contribution of volatile components to the material received due to micrometeoroid bombardment. From the estimates of the current flux of micrometeoroids to the Earth and the Moon, we determined a probable range for the rate of the cosmic dust accretion to the Moon as 6.19 × 10–13 to 14.74 × 10–13 g/m2 s. Based on the mean value of this rate, the mass of fallen micrometeoroids is equal to the total mass of cosmic matter delivered to the Moon by bodies 3 m to 4 km in size. Taking into consideration that the largest fraction (~90%) of the mass of micrometeoroids is represented by the material that is close to CM- and CI-type carbonaceous chondrites in composition, we estimated the amounts of released water and other components and volatile elements. The obtained values are close to the amount of water introduced by comets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Alexander, C.M.O.'D., Howard, K.T., Bowden, R., and Fogel, M.L., The classification of CM and CR chondrites using bulk H, C and N abundances and isotopic compositions, Geochim. Cosmochim. Acta, 2013, vol. 123, pp. 244–260.

    ADS  Google Scholar 

  2. Anderson, W.W. and Ahrens, T.J., Shock wave equations of state of chondritic meteorites, AIP Conf. Proc., 1998, vol. 429, pp. 115–118. https://doi.org/10.1063/1.55475

    Article  ADS  Google Scholar 

  3. Badyukov, D.D., Brandstaetter, F., and Topa, D., Fine-grained scoriaceous and unmelted micrometeorites: sources and relationships with cosmic spherules, Geochem. Int., 2018, vol. 56, no. 11, pp. 1071–1083.

    Google Scholar 

  4. Basilevsky, A.T., Abdrakhimov, A.M., and Dorofeeva, V.A., Water and other volatiles on the moon: a review, Sol. Syst. Res., 2012, vol. 46, no. 2, pp. 89–107.

    ADS  Google Scholar 

  5. Benna, M., Hurley, D., Stubbs, T., Mahaffy, P., and Elphic, R., Lunar soil hydration constrained by exospheric water liberated by meteoroid impacts, Nat. Geosci., 2019, vol. 12, pp. 333–338.

    ADS  Google Scholar 

  6. Bertoldi, C., Dachs, E., Cemic, L., Theye, T., Wirth, R., and Groger, W., The heat capacity of the serpentine subgroup mineral berthierine (Fe2.5Al0.5)[Si1.5Al0.5O5](OH)4, Clays Clay Miner., 2005, vol. 53, no. 4, pp. 380–388.

    ADS  Google Scholar 

  7. Carrillo-Sánchez, J.D., Nesvorný, D., Pokorný, P., Janches, D., and Plane, J.M.C., Sources of cosmic dust in the Earth’s atmosphere, Geophys. Res. Lett., 2016, vol. 43, pp. 11979–11986.

    ADS  Google Scholar 

  8. Cintala, M.J., Impact-induced thermal effects in the lunar and mercurian regoliths, J. Geophys. Res.: Planets, 1992, vol. 97, no. 1, pp. 947–973.

    ADS  Google Scholar 

  9. Clark, R.N., Detection of adsorbed water and hydroxyl on the Moon, Science, 2009, vol. 326, pp. 562–564.

    ADS  Google Scholar 

  10. Colaprete, A., Schultz, P., Heldmann, J., Wooden, D., Shirley M., Ennico, K., Hermalyn, B., Marshall, W., Ricco, A., Elphic, R.C., Goldstein, D., Summy, D., Bart, G.D., Asphaug, E., Korycansky, D., et al., Detection of water in the LCROSS ejecta plume, Science, 2010, vol. 330, pp. 463–468.

    ADS  Google Scholar 

  11. Cremonese, G., Borin, P., Martellato, E., Marzari, F., and Bruno, M., New calibration of the micrometeoroid flux on Earth, Astrophys. J. Lett., 2012, vol. 749, no. 2, art. ID L40.

    ADS  Google Scholar 

  12. Cremonese, G., Borin, P., Lucchetti, A., Marzari, F., and Bruno, M., Micrometeoroids flux on the Moon, Astron. Astrophys., 2013, vol. 551, art. ID A27.

    ADS  Google Scholar 

  13. Crider, D.H. and Vondrak, R.R., Hydrogen migration to the lunar poles by solar wind bombardment of the Moon, Adv. Space Res., 2002, vol. 30, pp. 1869–1874.

    ADS  Google Scholar 

  14. Dobrică, E., Engrand, C., Leroux, H., Rouzaud, J.-N., and Duprat, J., Transmission electron microscopy of CONCORDIA ultracarbonaceous antarctic micrometeorites (UCAMMs): mineralogical properties, Geochim. Cosmochim. Acta, 2012, vol. 76, pp. 68–82.

    ADS  Google Scholar 

  15. Fechtig, H., Hartung, J.B., Nagel, K., Neukum, G., and Storzer, D., Lunar microcrater studies, derived meteoroid fluxes, and comparison with satellite-borne experiments, Proc. 5th Lunar Science Conf., Houston, TX, New York: Pergamon, 1974, vol. 3, pp. 2463–2474.

  16. Feldman, W.C., Maurice, S., Lawrence, D.J., Little, R.C., Lawson, S.L., Gasnault, O., Wiens, R.C., Barraclough, B.L., Elphic, R.C., Prettyman, T.H., Steinberg, J.T., and Binder, A.B., Evidence for water ice near the lunar poles, J. Geophys. Res.: Planets, 2001, vol. 106, no. 10, pp. 23231–23251.

    ADS  Google Scholar 

  17. Fulle, M., Blum, J., Green, S.F., Gundlach, B., Herique, A., Moreno, F., Mottola, S., Rotundi, A., and Snodgrass, C., The refractory-to-ice mass ratio in comets, Mon. Not. R. Astron. Soc., 2019, vol. 482, pp. 3326–3340.

    ADS  Google Scholar 

  18. Genge, M.J., Engrand, C., Gounelle, M., and Taylor, S., The classification of micrometeorites, Meteorit. Planet. Sci., 2008, vol. 43, pp. 497–515.

    ADS  Google Scholar 

  19. Gladstone, G.R., Hurley, D.M., Retherford, K.D., Feldman, P.D., Pryor, W.R., Chaufray, J., Versteeg, M., Greathouse, T.K., Steffl, A.J., Throop, H., Parker, J.W., Kaufmann, D.E., Egan, A.F., Davis, M.W., Slater, D.C., et al., LRO-LAMP observations of the LCROSS impact plume, Science, 2010, vol. 330, pp. 472–476.

    ADS  Google Scholar 

  20. Gómez Martín, J.C., Bones, D.L., Carrillo-Sánchez, J.D., James, A.D., Trigo-Rodríguez, J.M., Fegley, B., Jr., and Plane, J.M.C., Novel experimental simulations of the atmospheric injection of meteoric metals, Astrophys. J., 2017, vol. 836, art. ID 212.

    ADS  Google Scholar 

  21. Grady, M.M., Catalogue of Meteorites, Cambridge: Cambridge Univ. Press, 2000, 5th ed.

    Google Scholar 

  22. Grun, E., Zook, H.A., Fechtig, H., and Giese, R.H., Collisional balance of the meteoritic complex, Icarus, 1985, vol. 62, pp. 244–272.

    ADS  Google Scholar 

  23. Hayne, P.O., Hendrix, A., Sefton-Nash, E., Siegler, M.A., Lucey, P.G., Retherford, K.D., Williams, J.-P., Greenhagen, B.T., and Paige, D.A., Evidence for exposed water ice in the Moon’s south polar regions from Lunar Reconnaissance Orbiter ultraviolet albedo and temperature measurements, Icarus, 2015, vol. 255, pp. 58–69.

    ADS  Google Scholar 

  24. Howard, K.T., Benedix, G.K., Bland, P.A., and Cressey, G., Modal mineralogy of CM chondrites by X-ray diffraction (PSD-XRD): Part 2. Degree, nature and settings of aqueous alteration, Geochim. Cosmochim. Acta, 2011, vol. 75, pp. 2735–2751.

    ADS  Google Scholar 

  25. Ivanov, B., Size-frequency distribution of asteroids and impact craters: estimates of impact rate, in Catastrophic Events Caused by Cosmic Objects, Adushkin, V.V. and Nemchinov, I.V., Eds., Berlin: Springer-Verlag, 2008, pp. 91–116.

    Google Scholar 

  26. Khitarov, N.I., Leonidov, V.Ya., and Pugin, V.A., Serpentinization and related issues, in Problemy kristallokhimii mineralov i endogennogo mineraloobrazovaniya (Crystal Chemistry of Minerals and Endogenous Mineral Formation), Leningrad: Nauka, 1967, pp. 194–210.

  27. Kohout, T., Kallonen, A., Suuronen, J.-P., Rochette, P., Hutzler, A., Gattacceca, J., Badjukov, D.D., Skála, R., Böhmová, V., and Čuda, J., Density, porosity, mineralogy, and internal structure of cosmic dust and alteration of its properties during high-velocity atmospheric entry, Meteorit. Planet. Sci., 2014, vol. 49, pp. 1157–1170.

    ADS  Google Scholar 

  28. Li, S., Milliken, R.E., Lucey, P.G., and Fisher, E., Possible detection of surface water ice in the Lunar polar regions using data from the Moon Mineralogy Mapper (M3), Proc. 48th Lunar and Planetary Science Conf., LPI Contribution no. 1964, Woodlands, TX, 2017.

  29. Litvak, M.L., Mitrofanov, I.G., Sanin, A., Malakhov, A., Boynton, W.V., Chin, G., Droege, G., Evans, L.G., Garvin, J., Golovin, D.V., Harshman, K., McClanahan, T.P., Mokrousov, M.I., Mazarico, E., Milikh, G., et al., Global maps of lunar neutron fluxes from the LEND instrument, J. Geophys. Res.: Planets, 2012, vol. 117, no. 12, art. ID E00H22.

    Google Scholar 

  30. Lodders, K. and Fegley, B., The Planetary Scientist’s Companion, Oxford: Oxford Univ. Press, 1998.

    Google Scholar 

  31. Love, S.G. and Brownlee, D.E., A direct measurement of the terrestrial mass accretion rate of cosmic dust, Science, 1993, vol. 262, pp. 550–553.

    ADS  Google Scholar 

  32. Lunar Sourcebook: A User’s Guide to the Moon, Heiken, G.H., Vaniman, D.T., and French, B.M., Eds., Cambridge: Cambridge Univ. Press, 1991.

    Google Scholar 

  33. Melosh, H.J., Impact Cratering: A Geologic Process, Oxford: Oxford Univ. Press, 1989.

    Google Scholar 

  34. Mitrofanov, I.G., Sanin, A.B., Boynton, W.V., Chin, G., Garvin, J.B., Golovin, D., Evans, L.G., Harshman, K., Kozyrev, A.S., Litvak, M.L., Malakhov, A., Mazarico, E., McClanahan, T., Milikh, G., Mokrousov, M., et al., Hydrogen mapping of the lunar South Pole using the LRO neutron detector experiment LEND, Science, 2010, vol. 330, no. 6003, pp. 483–486.

    ADS  Google Scholar 

  35. Morgan, J.W., Walker, R.J., Brandon, A.D., and Horan, M.F., Siderophile elements in Earth’s upper mantle and lunar breccias: data synthesis suggests manifestations of the same late influx, Meteorit. Planet. Sci., 2001, vol. 36, pp. 1257–1276.

    ADS  Google Scholar 

  36. Moses, J.I., Rawlins, K., Zahnle, K., and Dones, L., External sources of water for Mercury’s putative ice deposits, Icarus, 1999, vol. 137, pp. 197–221.

    ADS  Google Scholar 

  37. Needham, D.H. and Kring, D.A., Lunar volcanism produced a transient atmosphere around the ancient Moon, Earth Planet. Sci. Lett., 2017, vol. 478, pp. 175–178.

    ADS  Google Scholar 

  38. Neukum, G., Micrometeoroid flux, microcrater population development and erosion rates on lunar rocks and exposure ages of Apollo 16 rocks derived from crater statistics, Proc. 4th Lunar Science Conf., Abstracts of Papers, Houston, TX, 1973, vol. 4, pp. 558–559.

  39. Ong, L., Asphaug, E.I., Korycansky, D., and Coker, R.F., Volatile retention from cometary impacts on the Moon, Icarus, 2010, vol. 207, pp. 578–589.

    ADS  Google Scholar 

  40. Peucker-Ehrenbrink, B., Accretion of extraterrestrial matter during the last 80 million years and its effect on the marine osmium isotope record, Geochim. Cosmochim. Acta, 1996, vol. 60, pp. 3187–3196.

    ADS  Google Scholar 

  41. Peucker-Ehrenbrink, B. and Ravizza, G., The effects of sampling artifacts on cosmic dust flux estimates: A reevaluation of nonvolatile tracers (Os, Ir), Geochim. Cosmochim. Acta, 2000, vol. 64, pp. 1965–1970.

    ADS  Google Scholar 

  42. Pieters, C.M., Goswami, J.N., Clark, R.N., Annadurai, M., Boardman, J., Buratti, B., Combe, J.-P., Dyar, M.D., Green, R., Head, J.W., Hibbitts, C., Hicks, M., Isaacson, P., Klima, R., Kramer, G., et al., Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1, Science, 2009, vol. 326, pp. 568–572.

    ADS  Google Scholar 

  43. Plane, J.M.C., Cosmic dust in the Earth’s atmosphere, Chem. Soc. Rev., 2012, vol. 41, pp. 6507–6518.

    ADS  Google Scholar 

  44. Saal, A.E., Hauri, E.H., Cascio, M.L., van Orman, J.A., Rutherford, M.C., and Cooper, R.F., Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior, Nature, 2008, vol. 454, pp. 192–195.

    ADS  Google Scholar 

  45. Sanin, A.B., Mitrofanov, I.G., Litvak, M.L., Bakhtin, B.N., Bodnarik, J.G., Boynton, W.V., Chin, G., Evans, L.G., Harshman, K., Fedosov, F., Golovin, D.V., Kozyrev, A.S., Livengood, T.A., Malakhov, A.V., McClanahan, T.P., et al., Hydrogen distribution in the lunar polar regions, Icarus, 2017, vol. 283, pp. 20–30.

    ADS  Google Scholar 

  46. Shevchenko, V.V., On the cometary origin of the Lunar ice, Sol. Syst. Res., 1999, vol. 33, no. 5, pp. 400–408.

    ADS  Google Scholar 

  47. Stacy, N.J.S., Campbell, D.B., and Ford, P.G., Arecibo radar mapping of the lunar poles: a search for ice deposits, Science, 1997, vol. 276, pp. 1527–1530.

    ADS  Google Scholar 

  48. Stuart, J.S. and Binzel, R.P., Bias-corrected population, size distribution, and impact hazard for the near-Earth objects, Icarus, 2004, vol. 170, pp. 295–311.

    ADS  Google Scholar 

  49. Suttle, M.D., Genge, M.J., Folco, L., van Ginneken, M., Lin, Q., Russell, S.S., and Najorka, J., The atmospheric entry of fine-grained micrometeorites: the role of volatile gases in heating and fragmentation, Meteorit. Planet. Sci., 2019, vol. 54, pp. 503–520.

    ADS  Google Scholar 

  50. Svetsov, V.V. and Shuvalov, V.V., Water delivery to the Moon by asteroidal and cometary impacts, Planet. Space Sci., 2015, vol. 117, pp. 444–452.

    ADS  Google Scholar 

  51. Taylor, S., Lever, J.H., and Harvey, R.P., Accretion rate of cosmic spherules measured at the South Pole, Nature, 1998, vol. 392, pp. 899–903.

    ADS  Google Scholar 

  52. Taylor, S., Matrajt, G., and Guan, Y., Fine-grained precursors dominate the micrometeorite flux, Meteorit. Planet. Sci., 2012, vol. 47, pp. 550–564.

    ADS  Google Scholar 

  53. Tomioka, N., Tomeoka, K., Nakamura-Messenger, K., and Sekine, T., Heating effects of the matrix of experimentally shocked Murchison CM chondrite: comparison with micrometeorites, Meteorit. Planet. Sci., 2007, vol. 42, pp. 19–30.

    ADS  Google Scholar 

  54. Tyburczy, J.A., Krishnamurthy, R.V., Epstein, S., and Ahrens, T.J., Impact-induced devolatilization and hydrogen isotopic fractionation of serpentine: Implications for planetary accretion, Earth Planet. Sci. Lett., 1990, vol. 98, pp. 245–226.

    ADS  Google Scholar 

  55. Tyburczy, J.A., Duffy, T.S., Ahrens, T.J., and Lange, M.A., Shock wave equation of state of serpentine to 150 GPa: implications for the occurrence of water in the Earth’s lower mantle, J. Geophys. Res.: Solid Earth, 1991, vol. 96, no. 11, pp. 18011–18027.

    Google Scholar 

  56. Watson, K., Murray, B.C., and Brown, H., The behavior of volatiles on the lunar surface, J. Geophys. Res., 1961, vol. 66, pp. 3033–3045.

    ADS  Google Scholar 

  57. Werner, S.C. and Ivanov, B.A., Exogenic dynamics, cratering, and surface ages, in Treatise on Geophysics, Schubert, G., Ed., Amsterdam: Elsevier, 2015, ch. 10.10, pp. 327–365.

    Google Scholar 

  58. Werner, S.C., Harris, A.W., Neukum, G., and Ivanov, B.A., The near-Earth asteroid size-frequency distribution: a snapshot of the lunar impactor size-frequency distribution, Icarus, 2002, vol. 156, pp. 287–290.

    ADS  Google Scholar 

  59. Yada, T., Nakamura, T., Takaoka, N., Noguchi, T., Terada, K., Yano, H., Nakazawa, T., and Kojima, H., The global accretion rate of extraterrestrial materials in the last glacial period estimated from the abundance of micrometeorites in Antarctic glacier ice, Earth, Planets Space, 2004, vol. 56, pp. 67–79.

    ADS  Google Scholar 

  60. Zel’dovich, Ya.B. and Raizer, Yu.P., Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, New York: Dover, 2002.

    Google Scholar 

  61. Zhu, C., Crandall, P.B., Gillis-Davis, J.J., Ishii, H.A., Bradley, J.P., Corley, L.M., and Kaiser, R.I., Untangling the formation and liberation of water in the lunar regolith, Proc. Natl. Acad. Sci. U.S.A., 2019, vol. 116, no. 23, pp. 11165–11170.

    ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to A.T. Basilevsky and B.A. Ivanov for valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Badyukov.

Additional information

Translated by E. Petrova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badyukov, D.D. Micrometeoroids: the Flux on the Moon and a Source of Volatiles. Sol Syst Res 54, 263–274 (2020). https://doi.org/10.1134/S0038094620040024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094620040024

Keywords:

Navigation