Skip to main content
Log in

Effects of unequal blockage ratio and obstacle spacing on wave speed and overpressure during flame propagation in stoichiometric H2/O2

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Experiments on flame propagation and detonation onset behind two solid obstructions were carried out in premixed stoichiometric hydrogen–oxygen mixtures at 20 kPa in a closed-ended tube. Obstacles with three different blockage ratios (25%, 40%, and 80%) were used, and the arrangement between the obstacles was changed in terms of blockage distribution (increasing, decreasing, and equivalent); obstacle distance (38, 76, and 114 mm); and opening geometry. Changes in the obstacle pair characteristics resulted in shocks with distinct intensities and averaged Mach numbers, \( \overline{{M_{\text{s}} }} \), that propagated into the undisturbed mixture; \( \overline{{M_{\text{s}} }} \) varied from 1.3 to 4.5 for the range of obstacle pairs tested. Four distinct deflagration-to-detonation transition (DDT) timescale groups were identified with average values varying between 0.7 and 12 ms. Obstacle pairs with increasing blockage ratio (25–80% and 40–80%) resulted in jet ignition downstream of the second obstacle, reducing the DDT length and timescale significantly when compared to the other obstruction combinations investigated. Soot foil records showed that detonation onset was via ignition from one or more hot spots near the flame front for all obstacle pairs that resulted in jet ignition. The results from this work suggest that channels with irregular obstacle patterns can experience faster detonation onset depending on the position of the obstructions relative to the ignition point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Dorofeev, S.B.: Flame acceleration and explosion safety applications. Proc. Combust. Inst. 33(2), 2161–2175 (2011). https://doi.org/10.1016/j.proci.2010.09.008

    Article  Google Scholar 

  2. Chamberlain, G., Oran, E., Pekalski, A.: Detonations in industrial vapour cloud explosions. J. Loss. Prev. Proc. Ind. 62, 103918 (2019). https://doi.org/10.1016/j.jlp.2019.103918

    Article  Google Scholar 

  3. TEPCO: Fukushima Nuclear Accident Analysis Report (2012). https://www.tepco.co.jp/en/press/corp-com/release/betu12_e/images/120620e0104.pdf

  4. Oran, E.S., Chamberlain, G., Pekalski, A.: Mechanisms and occurrence of detonations in vapor cloud explosions. Prog. Energy Combust. Sci. 77, 100804 (2020). https://doi.org/10.1016/j.pecs.2019.100804

    Article  Google Scholar 

  5. Lee, J.H.: Initiation of gaseous detonation. Annu. Rev. Phys. Chem. 28(1), 75–104 (1977)

    Article  Google Scholar 

  6. Ciccarelli, G., Dorofeev, S.: Flame acceleration and transition to detonation in ducts. Prog. Energy Combust. Sci. 34(4), 499–550 (2008). https://doi.org/10.1016/j.pecs.2007.11.002

    Article  Google Scholar 

  7. Kuznetsov, M., Alekseev, V., Bezmelnitsyn, A., Breitung, W., Dorofeev, S., Matsukov, I., Veser, A., Yankin, Y.: Effect of obstacle geometry on behaviour of turbulent flames. RRC “Kurchatov Institute”, Preprint IAE-6137/13 (1999)

  8. Yu, L.X., Sun, W.C., Wu, C.K.: Flame acceleration and overpressure development in a semiopen tube with repeated obstacles. Proc. Combust. Inst. 29(1), 321–327 (2002). https://doi.org/10.1016/S1540-7489(02)80043-8

    Article  Google Scholar 

  9. Chao, J., Lee, J.: The propagation mechanism of high speed turbulent deflagrations. Shock Waves 12(4), 277–289 (2003). https://doi.org/10.1007/s00193-002-0161-2

    Article  Google Scholar 

  10. Lee, J.H., Knystautas, R., Chan, C.K.: Turbulent flame propagation in obstacle-filled tubes. Symposium (International) on Combustion, vol. 20(1), pp. 1663–1672 (1985). https://doi.org/10.1016/S0082-0784(85)80662-7

  11. Peraldi, O., Knystautas, R., Lee, J.H.: Criteria for transition to detonation in tubes. Symposium (International) on Combustion, vol. 21(1), pp. 1629–1637 (1988). https://doi.org/10.1016/S0082-0784(88)80396-5

  12. Guirao, C., Knystautas, R., Lee, J.: A summary of hydrogen–air detonations for reactor safety. Sandia National Laboratories/McGill University, Report NUREG/CR-4961 (1989)

  13. Ciccarelli, G., Wang, Z., Lu, J., Cross, M.: Effect of orifice plate spacing on detonation propagation. J. Loss. Prev. Proc. Ind. 49, 739–744 (2017). https://doi.org/10.1016/j.jlp.2017.03.014

    Article  Google Scholar 

  14. Gu, L.S., Knystautas, R., Lee, J.H.S.: Influence of obstacle spacing on the propagation of quasi-detonation. In: Borisov, A., Kuhl, L., Bowen, J.R., Leyer, J.-C. (eds.) Dynamics of Explosions, AIAA, pp. 232–247 (1988). https://doi.org/10.2514/5.9781600865886.0232.0247

  15. Lee, J.H.S., Knystautas, R., Freiman, A.: High speed turbulent deflagrations and transition to detonation in H2· air mixtures. Combust. Flame 56(2), 227–239 (1984). https://doi.org/10.1016/0010-2180(84)90039-7

    Article  Google Scholar 

  16. Lindstedt, R.P., Michels, H.J.: Deflagration to detonation transitions and strong deflagrations in alkane and alkene air mixtures. Combust. Flame 76(2), 169–181 (1989). https://doi.org/10.1016/0010-2180(89)90065-5

    Article  Google Scholar 

  17. Maeda, S., Minami, S., Okamoto, D., Obara, T.: Visualization of deflagration-to-detonation transitions in a channel with repeated obstacles using a hydrogen–oxygen mixture. Shock Waves 26(5), 573–586 (2016). https://doi.org/10.1007/s00193-016-0660-1

    Article  Google Scholar 

  18. Obara, T., Kobayashi, T., Ohyagi, S.: Mechanism of deflagration-to-detonation transitions above repeated obstacles. Shock Waves 22(6), 627–639 (2012). https://doi.org/10.1007/s00193-012-0408-5

    Article  Google Scholar 

  19. Dorofeev, S.B., Sidorov, V.P., Kuznetsov, M.S., Matsukov, I.D., Alekseev, V.I.: Effect of scale on the onset of detonations. Shock Waves 10(2), 137–149 (2000). https://doi.org/10.1007/s001930050187

    Article  Google Scholar 

  20. Frolov, S.M.: Fast deflagration-to-detonation transition. Russ. J. Phys. Chem. B 2(3), 442–455 (2008). https://doi.org/10.1134/S1990793108030184

    Article  Google Scholar 

  21. Rosas-Martinez, C.A.: Deflagration-to-detonation transition (DDT) studies: Effect of non-uniform obstacle distribution on DDT. PhD Thesis, Texas A&M University (2016)

  22. Polley, N.L., Egbert, M.Q., Petersen, E.L.: Methods of re-initiation and critical conditions for a planar detonation transforming to a cylindrical detonation within a confined volume. Combust. Flame 160(1), 212–221 (2013). https://doi.org/10.1016/j.combustflame.2012.09.017

    Article  Google Scholar 

  23. Clanet, C., Searby, G.: On the “tulip flame” phenomenon. Combust. Flame 105(1–2), 225–238 (1996). https://doi.org/10.1016/0010-2180(95)00195-6

    Article  Google Scholar 

  24. Thomas, G., Oakley, G., Bambrey, R.: An experimental study of flame acceleration and deflagration to detonation transition in representative process piping. Process Saf. Environ. Prot. 88(2), 75–90 (2010). https://doi.org/10.1016/j.psep.2009.11.008

    Article  Google Scholar 

  25. Kuznetsov, M., Alekseev, V., Matsukov, I., Dorofeev, S.: DDT in a smooth tube filled with a hydrogen–oxygen mixture. Shock Waves 14(3), 205–215 (2005). https://doi.org/10.1007/s00193-005-0265-6

    Article  Google Scholar 

  26. Knystautas, R., Lee, J.H., Guirao, C.M.: The critical tube diameter for detonation failure in hydrocarbon–air mixtures. Combust. Flame 48, 63–83 (1982). https://doi.org/10.1016/0010-2180(82)90116-X

    Article  Google Scholar 

  27. Nettleton, M.A.: Gaseous Detonations: Their Nature, Effects and Control. Springer, Berlin (2012)

    Google Scholar 

  28. Ishihara, S., Tamura, S., Ishii, K., Kataoka, H.: Effects of boundary layer on flame propagation generated by forced ignition behind an incident shock wave. Shock Waves 26(5), 599–609 (2016). https://doi.org/10.1007/s00193-016-0684-6

    Article  Google Scholar 

  29. Mirels, H., Mullen, J.F.: Small perturbation theory for shock-tube attenuation and nonuniformity. Phys. Fluids 7(8), 1208–1218 (1964). https://doi.org/10.1063/1.1711363

    Article  MathSciNet  Google Scholar 

  30. Hartunian, R.A., Russo, A.L., Marrone, P.V.: Boundary-layer transition and heat transfer in shock tubes. J. Aerosp. Sci. 27(8), 587–594 (1960). https://doi.org/10.2514/8.8656

    Article  MATH  Google Scholar 

  31. Landau, L.D., Lisfshitz, E.M.: Fluid Mechanics. Pergamon, Oxford (1987). https://doi.org/10.1016/C2013-0-03799-1

    Book  Google Scholar 

  32. Salamandra, G.D., Bazhenova, T.V., Zaicev, S.G., Soloukhin, R.I., Naboko, I.M., Sevastyanova, I.K.: Some Methods for Investigation of Fast-Running Processes. Acad. Nauk SSSR, Moscow (1960) (in Russian)

    Google Scholar 

  33. Oran, E.S., Khokhlov, A.M.: Deflagrations, hot spots, and the transition to detonation. Philos. Trans. R. Soc. Lond. 357(1764), 3539–3551 (1999). https://doi.org/10.1098/rsta.1999.0508

    Article  MathSciNet  MATH  Google Scholar 

  34. Medvedev, S., Khomik, S., Olivier, H., Polenov, A., Bartenev, A., Gelfand, B.: Hydrogen detonation and fast deflagration triggered by a turbulent jet of combustion products. Shock Waves 14(3), 193–203 (2005). https://doi.org/10.1007/s00193-005-0264-7

    Article  Google Scholar 

  35. Dorofeev, S.B., Bezmelnitsin, A.V., Sidorov, V.P., Yankin, J.G., Matsukov, I.D.: Turbulent jet initiation of detonation in hydrogen–air mixtures. Shock Waves 6(2), 73–78 (1996). https://doi.org/10.1007/BF02515190

    Article  Google Scholar 

  36. Kellenberger, M., Ciccarelli, G.: Advancements on the propagation mechanism of a detonation wave in an obstructed channel. Combust. Flame 191, 195–209 (2018). https://doi.org/10.1016/j.combustflame.2017.12.023

    Article  Google Scholar 

  37. Ciccarelli, G., Cross, M.: On the propagation mechanism of a detonation wave in a round tube with orifice plates. Shock Waves 26(5), 587–597 (2016). https://doi.org/10.1007/s00193-016-0676-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Petersen.

Additional information

Communicated by G. Ciccarelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 92 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brunoro Ahumada, C., Wang, Q. & Petersen, E.L. Effects of unequal blockage ratio and obstacle spacing on wave speed and overpressure during flame propagation in stoichiometric H2/O2. Shock Waves 30, 755–767 (2020). https://doi.org/10.1007/s00193-020-00959-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-020-00959-8

Keywords

Navigation