Skip to main content

Advertisement

Log in

Multifunctional role of brassinosteroid and its analogues in plants

  • Review paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Brassinosteroids (BRs) are steroid hormones that are essential for plant growth and development. These hormones control the division, elongation and differentiation of various cell types throughout the entire plant life cycle. Over the past few decades, studies on BRs caught the attention of plant scientists due to their versatile ability in mitigating various environmental stresses. Additionally, BR also involved in maintaining the quality of postharvest produces, by enhancing their resistance against abiotic and biotic stress. Furthermore, BRs are non-toxic and eco-friendly; this aids its importance in coping with adverse environmental conditions without disturbing the balance of the ecosystem. Our review summarized the structural characteristic and distribution of BRs in plants, role in postharvest technology, biotic stress tolerance, improving resistance against pesticide, organic pollutant toxicity and nodule formation and mycorrhization. This review provides useful information on BRs and its effects on plant system that we believe could be useful in maintaining environmental sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adie BA, Pérez-Pérez J, Pérez-Pérez MM, Godoy M, Sánchez-Serrano JJ, Schmelz EA, Solano R (2007) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19:1665–1681

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahammed GJ, Gao C-J, Ogweno JO, Zhou Y-H, Xia X-J, Mao W-H, Shi K, Yu J-Q (2012) Brassinosteroids induce plant tolerance against phenanthrene by enhancing degradation and detoxification in Solanum lycopersicum L. Ecotoxicol Environ Saf 80:28–36

    CAS  PubMed  Google Scholar 

  • Ahammed G, Zhou Y, Xia X, Mao W, Shi K, Yu J (2013a) Brassinosteroid regulates secondary metabolism in tomato towards enhanced tolerance to phenanthrene. Biol Plant 57:154–158

    CAS  Google Scholar 

  • Ahammed GJ, Ruan Y-P, Zhou J, Xia X-J, Shi K, Zhou Y-H, Yu J-Q (2013b) Brassinosteroid alleviates polychlorinated biphenyls-induced oxidative stress by enhancing antioxidant enzymes activity in tomato. Chemosphere 90:2645–2653

    CAS  PubMed  Google Scholar 

  • Ahammed GJ, He B-B, Qian X-J, Zhou Y-H, Shi K, Zhou J, Yu J-Q, Xia X-J (2017) 24-Epibrassinolide alleviates organic pollutants-retarded root elongation by promoting redox homeostasis and secondary metabolism in Cucumis sativus L. Environ Pollut 229:922–931

    CAS  PubMed  Google Scholar 

  • Ahmad H, Hayat S, Ali M, Ghani MI, Zhihui C (2017) Regulation of growth and physiological traits of cucumber (Cucumis sativus L.) through various levels of 28-homobrassinolide under salt stress conditions. Can J Plant Sci 98:132–140

    Google Scholar 

  • Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12

    PubMed  PubMed Central  Google Scholar 

  • Alabadí D, Blázquez MA (2009) Molecular interactions between light and hormone signaling to control plant growth. Plant Mol Biol 69:409

    PubMed  Google Scholar 

  • Albrecht C, Boutrot F, Segonzac C, Schwessinger B, Gimenez-Ibanez S, Chinchilla D, Rathjen JP, de Vries SC, Zipfel C (2012) Brassinosteroids inhibit pathogen-associated molecular pattern-triggered immune signaling independent of the receptor kinase BAK1. Proc Natl Acad Sci 109:303–308

    CAS  PubMed  Google Scholar 

  • Ali B (2017) Practical applications of brassinosteroids in horticulture—some field perspectives. Sci Hortic 225:15–21

    CAS  Google Scholar 

  • Ali B, Hayat S, Hasan SA, Ahmad A (2006) Effect of root applied 28-homobrassinolide on the performance of Lycopersicon esculentum. Sci Hortic 110:267–273

    CAS  Google Scholar 

  • Ali SS, Kumar GS, Khan M, Doohan FM (2013) Brassinosteroid enhances resistance to fusarium diseases of barley. Phytopathology 103:1260–1267

    CAS  PubMed  Google Scholar 

  • Ali SS, Gunupuru LR, Kumar GS, Khan M, Scofield S, Nicholson P, Doohan FM (2014) Plant disease resistance is augmented in uzu barley lines modified in the brassinosteroid receptor BRI1. BMC Plant Biol 14:219–227

    Google Scholar 

  • Anwar A, Liu Y, Dong R, Bai L, Yu X, Li Y (2018) The physiological and molecular mechanism of brassinosteroid in response to stress: a review. Biol Res 51:46

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arah IK, Amaglo H, Kumah EK, Ofori H (2015) Preharvest and postharvest factors affecting the quality and shelf life of harvested tomatoes: a mini review. Intl J Agron

  • Arteca RN (2013) Plant growth substances: principles and applications. Springer, Berlin

    Google Scholar 

  • Ayub RA, Reis L, Bosetto L et al (2018) Brassinosteroid plays a role on pink stage for receptor and transcription factors involved in strawberry fruit ripening. Plant Growth Regul 84:159–167. https://doi.org/10.1007/s10725-017-0329-5

    Article  CAS  Google Scholar 

  • Bajguz A (2007) Metabolism of brassinosteroids in plants. Plant Physiol Biochem 45:95–107

    CAS  PubMed  Google Scholar 

  • Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1–8

    CAS  PubMed  Google Scholar 

  • Bajguz A, Piotrowska-Niczyporuk A (2014) Interactive effect of brassinosteroids and cytokinins on growth, chlorophyll, monosaccharide and protein content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiol Biochem 80:176–183

    CAS  PubMed  Google Scholar 

  • Bajguz A, Tretyn A (2003a) The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry 62:1027–1046

    CAS  PubMed  Google Scholar 

  • Bajguz A, Tretyn A (2003b) The chemical structures and occurrence of brassinosteroids in plants. Brassinosteroids. Springer, Berlin, pp 1–44

    Google Scholar 

  • Banerjee A, Roychoudhury A (2018) Interactions of Brassinosteroids with major phytohormones: antagonistic effects. J Plant Growth Regul 37:1025–1032

    CAS  Google Scholar 

  • Barański M, Średnicka-Tober D, Volakakis N, Seal C, Sanderson R, Stewart GB, Benbrook C, Biavati B, Markellou E, Giotis C (2014) Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systematic literature review and meta-analyses. Br J Nutr 112:794–811

    PubMed  PubMed Central  Google Scholar 

  • Barbieri PA, Echeverría HE, Saínz Rozas HR, Andrade FH (2008) Nitrogen use efficiency in maize as affected by nitrogen availability and row spacing. Agron J 100:1094–1100. https://doi.org/10.2134/agronj2006.0057

    Article  CAS  Google Scholar 

  • Battaglia ML, Lee C, Thomason W (2018) Corn yield components and yield responses to defoliation at different row widths. Agron J 110:1–16. https://doi.org/10.2134/agronj2017.06.0322

    Article  Google Scholar 

  • Battaglia M, Lee C, Thomason W, Fike J, Sadeghpour A (2019a) Hail damage impacts on corn productivity: a review. Crop Sci 59:1–14. https://doi.org/10.2135/cropsci2018.04.0285

    Article  Google Scholar 

  • Battaglia ML, Lee C, Thomason W, Van Mullekom J (2019b) Effects of corn row width and defoliation timing and intensity on canopy light interception. Crop Sci. https://doi.org/10.2135/cropsci2018.05.0337

    Article  Google Scholar 

  • Bechtold U, Field B (2018) Molecular mechanisms controlling plant growth during abiotic stress. Oxford University Press, Oxford

    Google Scholar 

  • Bitterlich M, Krügel U, Boldt-Burisch K, Franken P, Kühn C (2014a) Interaction of brassinosteroid functions and sucrose transporter SlSUT2 regulate the formation of arbuscular mycorrhiza. Plant Signal Behav 9:e970426

    PubMed  PubMed Central  Google Scholar 

  • Bitterlich M, Krügel U, Boldt-Burisch K, Franken P, Kühn C (2014b) The sucrose transporter Sl SUT 2 from tomato interacts with brassinosteroid functioning and affects arbuscular mycorrhiza formation. Plant J 78:877–889

    CAS  PubMed  Google Scholar 

  • Bueno ADF, Bueno RCODF, Parra JRP, Vieira SS (2008) Effects of pesticides used in soybean crops to the egg parasitoid Trichogramma pretiosum. Cienc Rural 38:1495–1503

    CAS  Google Scholar 

  • Camoni L, Visconti S, Aducci P, Marra M (2018) 14-3-3 proteins in plant hormone signaling: doing several things at once. Front Plant Sci 9:297

    PubMed  PubMed Central  Google Scholar 

  • Chai Y-m, Zhang Q, Tian L, Li C-L, Xing Y, Qin L, Shen Y-Y (2013) Brassinosteroid is involved in strawberry fruit ripening. Plant Growth Regul 69:63–69

    CAS  Google Scholar 

  • Champa WH, Gill M, Mahajan B, Aror N, Bedi S (2015) Brassinosteroids improve quality of table grapes (Vitis vinifera L.) cv. flame seedless. Trop Agric Res 26:368–379

    Google Scholar 

  • Choudhary SP, Yu JQ, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP (2012) Benefits of brassinosteroid crosstalk. Trends Plant Sci 17:594–605

    CAS  PubMed  Google Scholar 

  • Clouse SD (2011) Brassinosteroids. The Arabidopsis Book/American Society of Plant Biologists 9

  • Clouse SD, Langford M, McMorris TC (1996) A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol 111:671–678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Czymmek K, Ketterings Q, Ros M, Battaglia M, Cela S, Crittenden S, Gates D, Walter T, Latessa S, Klaiber L, Albrecht G (2020) The New York Phosphorus Index 2.0. Agronomy Fact Sheet Series. Fact Sheet #110. Nutrient Management Spear Program. Cornell University Cooperative Extension. https://nmsp.cals.cornell.edu/publications/factsheets/factsheet110.pdf

  • Derevyanchuk M, Litvinovskaya R, Khripach V et al (2016) Brassinosteroid-induced de novo protein synthesis in Zea mays under salinity and bioinformatic approach for identification of heat shock proteins. Plant Growth Regul 78:297–305. https://doi.org/10.1007/s10725-015-0093-3

    Article  CAS  Google Scholar 

  • De Vos M, Van Oosten VR, Van Poecke RM, Van Pelt JA, Pozo MJ, Mueller MJ et al (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microbe Interact 18:923–937. https://doi.org/10.1094/MPMI-18-0923

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Zhu Z, Zhao J, Nie Y, Zhang Y, Sheng J, Meng D, Mao H, Tang X (2009) Effects of postharvest brassinolide treatment on the metabolism of white button mushroom (Agaricus bisporus) in relation to development of browning during storage. Food Bioprocess Technol 9:1327–1334

    Google Scholar 

  • Esposito D, Komarnytsky S, Shapses S, Raskin I (2011) Anabolic effect of plant brassinosteroid. FASEB J 25:3708–3719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fàbregas N, Lozano-Elena F, Blasco-Escámez D, Tohge T, Martínez-Andújar C, Albacete A, Osorio S, Bustamante M, Riechmann JL, Nomura T (2018) Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth. Nat Commun 9:4680

    PubMed  PubMed Central  Google Scholar 

  • Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Hassan S, Shan D, Khan F, Ullah N, Faiq M, Khan MR, Tareen AK, Khan A, Ullah A, Ullah N, Huang J (2014) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75(2):391–404. https://doi.org/10.1007/s10725-014-0013-y

    Article  CAS  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Chauhan BS, Khan F et al (2016a) Responses of rapid viscoanalyzer profile and other rice grain qualities to exogenously applied plant growth regulators under high day and high night temperatures. PLoS ONE 11(7):159590. https://doi.org/10.1371/journal.pone.0159590

    Article  CAS  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Ihsan Z, Shah AN, Wu C, Yousaf M, Nasim W, Alharby H, Alghabari F, Huang J (2016b) Exogenously applied plant growth regulators enhance the morphophysiological growth and yield of rice under high temperature. Front Plant Sci 7:1250. https://doi.org/10.3389/fpls.2016.01250

    Article  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Tanveer M, Ihsan MZ, Shah AN, Ullah A, Nasrullah KF, Ullah S, AlharbyH NW, Wu C, Huang J (2016c) A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice. Plant Physiol Biochem 103:191–198

    CAS  PubMed  Google Scholar 

  • Fahad S, Hussain S, Saud S, Khan F, Hassan S, Nasim W, Arif M, Wang F, Huang J (2016d) Exogenously applied plant growth regulators affect heat-stressed rice pollens. J Agron Crop Sci 202:139–150

    CAS  Google Scholar 

  • Fariduddin Q, Yusuf M, Ahmad I, Ahmad A (2014) Brassinosteroids and their role in response of plants to abiotic stresses. Biol Plant 58:9–17

    CAS  Google Scholar 

  • Farnham DE (2001) Row spacing, plant density, and hybrid effects on corn grain yield and moisture. Agron J 93:1049–1053

    Google Scholar 

  • Feng W, Lindner H, Robbins NE, Dinneny JR (2016) Growing out of stress: the role of cell-and organ-scale growth control in plant water-stress responses. Plant Cell 28:1769–1782

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson BJ, Ross JJ, Reid JB (2005) Nodulation phenotypes of gibberellin and brassinosteroid mutants of pea. Plant Physiol 138:2396–2405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Filipenko E, Kochetov A, Kanayama Y, Malinovsky V, Shumny V (2013) PR-proteins with ribonuclease activity and plant resistance against pathogenic fungi. Russ J Genet 3:474–480

    Google Scholar 

  • Foo E, Ross JJ, Jones WT, Reid JB (2013) Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins. Ann Bot 111:769–779

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foo E, Ferguson B, Reid J (2014) The potential roles of strigolactones and brassinosteroids in the autoregulation of nodulation pathway. Ann Bot 113:1037–1045

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friedrichsen DM, Nemhauser J, Muramitsu T, Maloof JN, Alonso J, Ecker JR, Furuya M, Chory J (2002) Three redundant brassinosteroid early response genes encode putative bHLH transcription factors required for normal growth. Genetics 162:1445–1456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54:137–164

    CAS  PubMed  Google Scholar 

  • Furio R, Salazar S, Martínez-Zamora G, Coll Y, Hael-Conrad V, Díaz-Ricci J (2019) Brassinosteroids promote growth, fruit quality and protection against Botrytis on Fragaria x ananassa. Eur J Plant Pathol. https://doi.org/10.1007/s10658-019-01704-3

    Article  Google Scholar 

  • Gao W, Long L, Zhu LF, Xu L, Gao WH, Sun LQ, Liu LL, Zhang XL (2013) Proteomic and virus-induced gene silencing (VIGS) analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to Verticillium dahliae. Mol Cell Proteomics 12:3690–3703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao H, Kang L, Liu Q, Cheng N, Wang B, Cao W (2015) Effect of 24-epibrassinolide treatment on the metabolism of eggplant fruits in relation to development of pulp browning under chilling stress. J Food Sci Technol 52:3394–3401

    CAS  PubMed  Google Scholar 

  • Ge Y, Li C, Tang R, Sun R, Li J (2014) Effects of postharvest brassinolide dipping on quality parameters and antioxidant activity in peach fruit. In: Proceedings of III international symposium on postharvest pathology: using science to increase food availability, pp. 377–384

  • Ghorbani B, Pakkish Z (2014) Brassinosteroid enhances cold stress tolerance of Washington navel orange (Citrus sinensis L.) fruit by regulating antioxidant enzymes during storage. Agric Conspec Sci 79:109–114

    Google Scholar 

  • González-García MP, Vilarrasa-Blasi J, Zhiponova M, Divol F, Mora-Garcia S, Russinova E, Cano-Delgado AI (2011) Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots. Development 138:849–859. https://doi.org/10.1242/dev.057331

    Article  CAS  PubMed  Google Scholar 

  • Grove MD, Spencer GF, Rohwedder WK, Mandava N, Worley JF, Warthen JD, Steffens GL, Flippen-Anderson JL, Cook JC (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281:201–216

    Google Scholar 

  • Hatzios KK, Burgos N (2004) Metabolism-based herbicide resistance: regulation by safeners. Weed Sci 52:454–467

    CAS  Google Scholar 

  • Hayat S, Ahmad A (2010) Brassinosteroids: a class of plant hormone. Springer, Berlin

    Google Scholar 

  • Hayat S, Ahmad A, Fariduddin Q (2003) Brassinosteroids: a regulator of 21st century. Springer, Berlin, pp 231–246

    Google Scholar 

  • He Y, Li J, Ban Q, Han S, Rao J (2018) Role of brassinosteroids in persimmon (Diospyros kaki L.) fruit ripening. J Agric Food Chem 66:2637–2644

    CAS  PubMed  Google Scholar 

  • Hink MA, Shah K, Russinova E, De-Vries SC, Visser AJ (2008) Fluorescence fluctuation analysis of Arabidopsis thaliana somatic embryogenesis receptor-like kinase and brassinosteroid insensitive 1 receptor oligomerization. Biophys J 94:1052–1062

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hou J, Zhang Q, Zhou Y, Ahammed GJ, Zhou Y, Yu J, Fang H, Xia X (2018) Glutaredoxin GRXS16 mediates brassinosteroid-induced apoplastic H2O2 production to promote pesticide metabolism in tomato. Environ Pollut 240:227–234

    CAS  PubMed  Google Scholar 

  • Javid MG, Sorooshzadeh A, Moradi F, Modarres Sanavy SAM, Allahdadi I (2011) The role of phytohormones in alleviating salt stress in crop plants. Aust J Crop Sci 5:726

    CAS  Google Scholar 

  • Kang Y, Guo S (2011) Role of brassinosteroids on horticultural crops. A class of plant hormone Springer, In Brassinosteroids, pp 269–288

    Google Scholar 

  • Kanwar MK, Bhardwaj R, Arora P, Chowdhary SP, Sharma P, Kumar S (2012) Plant steroid hormones produced under Ni stress are involved in the regulation of metal uptake and oxidative stress in Brassica juncea L. Chemosphere 86:41–49

    CAS  PubMed  Google Scholar 

  • Kaya C, Ashraf M, Sonmez O (2015) Promotive effect of exogenously applied thiourea on key physiological parameters and oxidative defense mechanism in salt-stressed Zea mays L. plants. Turk J Bot 39(5):786–795

    CAS  Google Scholar 

  • Kaya C, Akram NA, Ashraf M, Sonmez O (2018) Exogenous application of humic acid mitigates salinity stress in maize (Zea mays L.) plants by improving some key physico-biochemical attributes. Cereal Res Commun 46:67–78

    CAS  Google Scholar 

  • Ketterings Q, Czymmek K (2007) Removal of phosphorus by field crops. Agronomy Fact Sheet Series. Fact Sheet #28. Nutrient Management Spear Program. Cornell University Cooperative Extension. https://nmsp.cals.cornell.edu/publications/factsheets/factsheet28.pdf

  • Khripach V, Zhabinskii V, Litvinovskaya R, Zavadskaya M, Savel'eva E, Karas I, Kilcchevskii A, Titova SA (1996) Titova S A method for protection of potato from phytophthorosis. Pat. Appl, BY, p 960346

    Google Scholar 

  • Kim TW, Guan S, Sun Y, Deng Z, Tang W, Shang JX, Sun Y, Burlingame AL, Wang ZY (2009) Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat Cell Biol 11:1254–1260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim BH, Kim SY, Nam KH (2012) Genes encoding plant-specific class III peroxidases are responsible for increased cold tolerance of the brassinosteroid-insensitive 1 mutant. Mol Cells 34:539–548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Korableva N, Platonova T, Dogonadze M, Evsunina A (2002) Brassinolide effect on growth of apical meristems, ethylene production, and abscisic acid content in potato tubers. Biol Plant 45:39–43

    CAS  Google Scholar 

  • Krishna P (2003) Brassinosteroid-mediated stress responses. J Plant Growth Regul 22:289–297

    CAS  PubMed  Google Scholar 

  • Krusell L, Sato N, Fukuhara I, Koch BE, Grossmann C, Okamoto S, Oka-Kira E, Otsubo Y, Aubert G, Nakagawa T (2011) The Clavata2 genes of pea and Lotus japonicus affect autoregulation of nodulation. Plant J 65:861–871

    CAS  PubMed  Google Scholar 

  • Kumar S, Mukerji KG, Lai R (1996) Molecular aspects of pesticide degradation by microorganisms. Crit Rev Microbiol 22:1–26

    CAS  PubMed  Google Scholar 

  • Kumar R, Khurana A, Sharma AK (2014) Role of plant hormones and their interplay in development and ripening of fleshy fruits. J Exp Bot 65:4561–4575

    CAS  PubMed  Google Scholar 

  • Kumar P, Lai L, Battaglia ML, Kumar S, Owens V, Fike J, Galbraith J, Hong CO, Faris R, Crawford R, Crawford J, Hansen J, Mayton H, Viands D (2019a) Impacts of nitrogen fertilization rate and landscape position on select soil properties in switchgrass field at four sites in the USA. CATENA 180:183–193

    CAS  Google Scholar 

  • Kumar S, Lai L, Kumar P, Feliciano YMV, Battaglia ML, Hong CO, Owens VN, Fike J, Farris R, Galbraith J (2019b) Impacts of nitrogen rate and landscape position on soils and switchgrass root growth parameters. Agron J 111(3):1046–1059

    CAS  Google Scholar 

  • Lima J, Lobato A (2017) Brassinosteroids improve photosystem II efficiency, gas exchange, antioxidant enzymes and growth of cowpea plants exposed to water deficit. Physiol Mol Biol Plants 23:59–72

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Jia C, Zhang M, Chen D, Chen S, Guo R, Guo D, Wang Q (2014) Ectopic expression of a BZR1-1D transcription factor in brassinosteroid signalling enhances carotenoid accumulation and fruit quality attributes in tomato. Plant Biotechnol J 12:105–115

    CAS  PubMed  Google Scholar 

  • Liu Q, Xi Z, Gao J, Meng Y, Lin S, Zhang Z (2016) Effects of exogenous 24-epibrassinolide to control grey mould and maintain postharvest quality of table grapes. Int J Food Sci Technol 51:1236–1243

    CAS  Google Scholar 

  • Liu J, Zhang D, Sun X, Ding T, Lei B, Zhang C (2017) Structure-activity relationship of brassinosteroids and their agricultural practical usages. Steroids 124:1–17

    CAS  PubMed  Google Scholar 

  • Mandava B, Wang Y (2016) Effect of brassinosteroids cherry maturation, firmness and fruit quality. Acta Hort 1139:451–458

    Google Scholar 

  • Milborrow B, Pryce R (1973) The brassins. Nature 243:46

    CAS  Google Scholar 

  • Mitchell JW, Gregory LE (1972) Enhancement of overall growth, a new response to brassins. Nature 239:253–254

    CAS  Google Scholar 

  • Miyazawa H, Oka-Kira E, Sato N, Takahashi H, Wu G-J, Sato S, Hayashi M, Betsuyaku S, Nakazono M, Tabata S (2010) The receptor-like kinase KLAVIER mediates systemic regulation of nodulation and non-symbiotic shoot development in Lotus japonicus. Development 137:4317–4325

    CAS  PubMed  Google Scholar 

  • Moore TC (2012) Biochemistry and physiology of plant hormones. Springer, Berlin

    Google Scholar 

  • Müssig C, Fischer S, Altmann T (2002) Brassinosteroid-regulated gene expression. Plant Physiol 129:1241–1251

    PubMed  PubMed Central  Google Scholar 

  • Mylona P, Pawlowski K, Bisseling T (2011) Symbiotic nitrogen fixation. Plant Cell 7:869

    Google Scholar 

  • Nahar K, Kyndt T, Hause B, Höfte M, Gheysen G (2013) Brassinosteroids suppress rice defense against root-knot nematodes through antagonism with the jasmonate pathway. Mol Plant Microbe Interact 26:106–115

    CAS  PubMed  Google Scholar 

  • Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguch I, Yoshida S (2003) Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J 33:887–898

    CAS  PubMed  Google Scholar 

  • Nam KH, Li J (2004) The Arabidopsis transthyretin-like protein is a potential substrate of brassinosteroid-insensitive-1. Plant Cell 16:2406–2417

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oguntimehin I, Eissa F, Sakugawa H (2010) Negative effects of fluoranthene on the ecophysiology of tomato plants (Lycopersicon esculentum Mill): fluoranthene mists negatively affected tomato plants. Chemosphere 78:877–884

    CAS  PubMed  Google Scholar 

  • Ogweno JO, Hu WH, Song XS et al (2010) Photoinhibition-induced reduction in photosynthesis is alleviated by abscisic acid, cytokinin and brassinosteroid in detached tomato leaves. Plant Growth Regul 60:175–182. https://doi.org/10.1007/s10725-009-9439-z

    Article  CAS  Google Scholar 

  • Özdemir F, Bor M, Demiral T, Türkan İ (2004) Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Regul 42:203–211

    Google Scholar 

  • Park S-H, Han K-S, Kim T-W, Shim J-K, Takatsuto S, Yokota T, Kim S-K (1999) In vivo and in vitro conversion of teasterone to typhasterol in cultured cells of Marchantia polymorpha. Plant Cell Physiol 40:955–960

    CAS  Google Scholar 

  • Pascual Serrano D, Vera Pasamontes G, Girón Moreno R (2016) Modelos animales de dolor neuropático. Dolor Investigación Clínica & Terapéutica 31:70–76

    Google Scholar 

  • Pinol R, Simón E (2009) Effect of 24-epibrassinolide on chlorophyll fluorescence and photosynthetic CO2 assimilation in Vicia faba plants treated with the photosynthesis-inhibiting herbicide terbutryn. J Plant Growth Regul 28:97–105

    CAS  Google Scholar 

  • Piotrowska A, Bajguz A (2011) Conjugates of abscisic acid, brassinosteroids, ethylene, gibberellins, and jasmonates. Phytochemistry 72:2097–2112

    CAS  PubMed  Google Scholar 

  • Rajewska I, Talarek M, Bajguz A (2016) Brassinosteroids and response of plants to heavy metals action. Front Plant Sci 7:629

    PubMed  PubMed Central  Google Scholar 

  • Reid DE, Ferguson BJ, Hayashi S, Lin Y-H, Gresshoff PM (2011) Molecular mechanisms controlling legume autoregulation of nodulation. Ann Bot 108:789–795

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rostami I, Juhasz AL (2011) Assessment of persistent organic pollutant (POP) bioavailability and bioaccessibility for human health exposure assessment: a critical review. Crit Rev Environ Sci Technol 41:623–656

    Google Scholar 

  • Roth U, Friebe A, Schnabl H (2000) Resistance induction in plants by a brassinosteroid-containing extract of Lychnis viscaria L. Zeitschrift für Naturforschung C 55:552–559

    CAS  Google Scholar 

  • Sadura I, Janeczko A (2014) Physiological and molecular mechanisms of brassinosteroid-induced tolerance to high and low temperature in plants. Biol Plantarum 40:333–342

    Google Scholar 

  • San Miguel A, Faure M, Ravanel P, Raveton M (2012) Biological responses of maize (Zea mays) plants exposed to chlorobenzenes. Case study of monochloro-, 1, 4-dichloro-and 1, 2, 4-trichloro-benzenes. Ecotoxicology 21:315–324

    CAS  PubMed  Google Scholar 

  • Sasse JM (2003) Physiological actions of brassinosteroids: an update. J Plant Growth Regul 22:276–288

    CAS  PubMed  Google Scholar 

  • Schaller H (2003) The role of sterols in plant growth and development. Prog Lipid Res 42:163–175

    CAS  PubMed  Google Scholar 

  • Serna M, Hernández F, Coll F, Coll Y, Amorós A (2012) Brassinosteroid analogues effects on the yield and quality parameters of greenhouse-grown pepper (Capsicum annuum L.). Plant Growth Regul 68:333–342

    CAS  Google Scholar 

  • Setsungnern A, Treesubsuntorn C, Thiravetyan P (2019) Exogenous 24-epibrassinolide enhanced benzene detoxification in Chlorophytum comosum via overexpression and conjugation by glutathione. Sci Total Environ 662:805–815

    CAS  PubMed  Google Scholar 

  • Shapiro CA, Wortmann CS (2006) Corn response to nitrogen rate, row spacing, and plant density in Eastern Nebraska. Agron J 98:529–535. https://doi.org/10.2134/agronj2005.0137

    Article  Google Scholar 

  • Sharma I, Bhardwaj R, Pati PK (2012) Mitigation of adverse effects of chlorpyrifos by 24-epibrassinolide and analysis of stress markers in a rice variety Pusa Basmati-1. Ecotoxicol Environ Saf 85:72–81

    CAS  PubMed  Google Scholar 

  • Sharma D, Kaur GS, Khera KS (2015) Triazophos-induced oxidative stress and histomorphological changes in ovary of female Wistar rats. Pestic Biochem Physiol 117:9–18. https://doi.org/10.1016/j.pestbp.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Thakur S, Kumar V, Kanwar MK, Kesavan AK, Thukral AK, Bhardwaj R, Alam P, Ahmad P (2016) Pre-sowing seed treatment with 24-epibrassinolide ameliorates pesticide stress in Brassica juncea L. through the modulation of stress markers. Front Plant Sci 7:1569

    PubMed  PubMed Central  Google Scholar 

  • Sharma A, Kumar V, Bhardwaj R, Thukral AK (2017) Seed pre-soaking with 24-epibrassinolide reduces the imidacloprid pesticide residues in green pods of Brassica juncea L. Toxicol Environ Chem 99:95–103

    CAS  Google Scholar 

  • Singh I, Shono M (2005) Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato. Plant Growth Regul 47:111. https://doi.org/10.1007/s10725-005-3252-0

    Article  CAS  Google Scholar 

  • Sonmez O, Pierzynski GM, Frees L, Davis B, Leikam D, Sweeney DW, Janssen KA (2009a) A field assessment tool for phosphorus losses in runoff in Kansas. J Soil Water Conserv 64(3):212–222

    Google Scholar 

  • Sonmez O, Aydemir S, Kaya C (2009b) Mitigation effects of mycorrhiza on boron toxicity in wheat plants. N Z J Crop Hort Sci 37(2):99–104

    CAS  Google Scholar 

  • Strack D, Fester T, Hause B, Schliemann W, Walter MH (2003) Arbuscular mycorrhiza: biological, chemical, and molecular aspects. J Chem Ecol 29:1955–1979

    CAS  PubMed  Google Scholar 

  • Sugawara T, Trifonova EA, Kochetov AV, Kanayama Y (2016) Expression of an extracellular ribonuclease gene increases resistance to Cucumber mosaic virus in tobacco. BMC Plant Biol 16:246

    PubMed  Google Scholar 

  • Symons GM, Davies C, Shavrukov Y, Dry IB, Reid JB, Thomas MR (2006) Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiol 140:150–158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szekeres M, Németh K, Koncz-Kálmán Z, Mathur J, Kauschmann A, Altmann T, Rédei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in arabidopsis. Cell 85:171–182. https://doi.org/10.1016/S0092-8674(00)81094-6

    Article  CAS  PubMed  Google Scholar 

  • Takatsuto S (1994) Brassinosteroids: distribution in plants, bioassays and microanalysts by gas chromatography—mass spectrometry. J Chromatogr 658:3–15

    CAS  Google Scholar 

  • Takatsuto S, Kamuro Y, Watanabe T, Noguchi T, Kuriyama H (1996) Synthesis and plant growth promoting effects of brassinosteroid compound TS303. Proc Plant Growth Regul Soc Am 23:15–20

    Google Scholar 

  • Tang W, Kim TW, Oses-Prieto JA, Sun Y, Deng Z, Zhu S, Wang R, Burlingame AL, Wang ZY (2008) BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321:557–560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tavallali V (2018) Vacuum infiltration of 24-epibrassinolide delays chlorophyll degradation and maintains quality of lime during cold storage. Acta Sci Polonorum-Hortorum Cultus 17:35–48

    Google Scholar 

  • Terakado J, Fujihara S, Goto S, Kuratani R, Suzuki Y, Yoshida S, Yoneyama T (2005) Systemic effect of a brassinosteroid on root nodule formation in soybean as revealed by the application of brassinolide and brassinazole. Soil Sci Plant Nutr 51:389–395

    CAS  Google Scholar 

  • Thapliyal VS, Rai PN, Bora L (2016) Influence of pre-harvest application of gibberellin and brassinosteroid on fruit growth and quality characteristics of pear (Pyrus pyrifolia (Burm.) Nakai) cv. Gola. J Appl Natl Sci 8(4):2305–2310

    CAS  Google Scholar 

  • Thelen KD (2006) Interaction between row spacing and yield: why it works. Crop Manag. https://doi.org/10.1094/CM-2006-0227-03-RV

    Article  Google Scholar 

  • Thummel CS, Chory J (2002) Steroid signaling in plants and insects: common themes, different pathways. Genes Dev 16:3113–3129

    CAS  PubMed  Google Scholar 

  • Tunc-Ozdemir M, Jones AM (2017) BRL3 and AtRGS1 cooperate to fine tune growth inhibition and ROS activation. PLoS ONE 12:e0177400

    PubMed  PubMed Central  Google Scholar 

  • Vardhini BV (2016) Enhancement of vegetables and fruits growth and yield by application of brassinosteroids under abiotic stresses. In: Azooz MM, Ahmad P (eds) Plant-environment interaction: responses and approaches to mitigate stress. New York, Wiley. https://doi.org/10.1002/9781119081005.ch7

  • Volynets A, Pshenichnaya L, Manzhelesova N, Morozik G, Khripach V (2012) The nature of protective action of 24-epibrassinolide on barley plants. In: Proceedings of proceedings-plant growth regulation society of america-annual meeting, pp. 133–137

  • Wang Q, Ding T, Gao L, Pang J, Yang N (2012) Effect of brassinolide on chilling injury of green bell pepper in storage. Sci Hortic 144:195–200

    CAS  Google Scholar 

  • Wang Z, Jiang Y, Peng X, Xu S, Zhang H, Gao J, Xi Z (2017) Exogenous 24-epibrassinolide regulates antioxidant and pesticide detoxification systems in grapevine after chlorothalonil treatment. Plant Growth Regul 81:455–466

    CAS  Google Scholar 

  • Winter J, Schneider B, Meyenburg S, Strack D, Adam G (1999) Monitoring brassinosteroid biosynthetic enzymes by fluorescent tagging and HPLC analysis of their substrates and products. Phytochemistry 51:237–242

    CAS  Google Scholar 

  • Wu L, Yang H (2016) Combined application of carboxymethyl chitosan coating and brassinolide maintains the postharvest quality and shelf life of green asparagus. J Food Process Preserv 40:154–165

    CAS  Google Scholar 

  • Wu J, Kim SG, Kang KY, Kim JG, Park SR, Gupta R, Kim YH, Wang Y, Kim ST (2016) Overexpression of a pathogenesis-related protein 10 enhances biotic and abiotic stress tolerance in rice. Plant Pathol J 32:552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia X-J, Wang Y-J, Zhou Y-H, Tao Y, Mao W-H, Shi K, Asami T, Chen Z, Yu J-Q (2009) Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol 150:801–814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang CJ, Zhang C, Lu YN, Jin JQ, Wang XL (2011) The mechanisms of brassinosteroids’ action: from signal transduction to plant development. Mol Plant 4:588–600

    CAS  PubMed  Google Scholar 

  • Ye H, Liu S, Tang B, Chen J, Xie Z, Nolan TM, Jiang H, Guo H, Lin H-Y, Li L (2017) RD26 mediates crosstalk between drought and brassinosteroid signalling pathways. Nat Commun 8:14573

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21:133–139

    CAS  PubMed  Google Scholar 

  • Zaharah S, Singh Z (2010) Role of brassinosteroids in mango fruit ripening. In: Proceedings of XXVIII international horticultural congress on science and horticulture for people (IHC2010): International Symposium on 934; pp. 929–935.

  • Zaharah SS, Singh Z, Symons GM, Reid JB (2012) Role of brassinosteroids, ethylene, abscisic acid, and indole-3-acetic acid in mango fruit ripening. J Plant Growth Regul 31:363–372

    CAS  Google Scholar 

  • Zhang DW, Deng XG, Fu FQ, Lin HH (2015) Induction of plant virus defense response by brassinosteroids and brassinosteroid signaling in Arabidopsis thaliana. Planta 241:875–885

    CAS  PubMed  Google Scholar 

  • Zhu Z, Zhang Z, Qin G, Tian S (2010) Effects of brassinosteroids on postharvest disease and senescence of jujube fruit in storage. Postharvest Biol Technol 56:50–55

    CAS  Google Scholar 

  • Zhu F, Yun Z, Ma Q, Gong Q, Zeng Y, Xu J, Cheng Y, Deng X (2015a) Effects of exogenous 24-epibrassinolide treatment on postharvest quality and resistance of Satsuma mandarin (Citrus unshiu). Postharvest Biol Technol 100:8–15

    CAS  Google Scholar 

  • Zhu T, Tan W-R, Deng X-G, Zheng T, Zhang D-W, Lin H-H (2015b) Effects of brassinosteroids on quality attributes and ethylene synthesis in postharvest tomato fruit. Postharvest Biol Technol 100:196–204

    CAS  Google Scholar 

  • Zhu Y, Wang B, Tang K, Hsu C-C, Xie S, Du H, Yang Y, Tao WA, Zhu J-K (2017) An arabidopsis nucleoporin NUP85 modulates plant responses to ABA and salt stress. PLoS Genet 13:e1007124

    PubMed  PubMed Central  Google Scholar 

  • Zhu Z, Liang H, Chen G et al (2019) Isolation of the brassinosteroid receptor genes and recharacterization of dwarf plants by silencing of SlBRI1 in tomato. Plant Growth Regul 89:59–71. https://doi.org/10.1007/s10725-019-00524-z

    Article  CAS  Google Scholar 

  • Zou LJ, Deng XG, Le Z, Zhu T, Tan WR, Muhammad A, Zhu LJ, Zhang C, Zhang DW, Lin HH (2018) Nitric oxide as a signaling molecule in brassinosteroid-mediated virus resistance to Cucumber mosaic virus in Arabidopsis thaliana. Physiol Plant 163:196–210

    CAS  PubMed  Google Scholar 

  • Zou L, Qu M, Zeng L et al (2020) The molecular basis of the interaction between Brassinosteroid induced and phosphorous deficiency induced leaf inclination in rice. Plant Growth Regul 91:263–276. https://doi.org/10.1007/s10725-020-00604-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We apologize to the authors whose works are not cited because of space constraints.

Funding

The National Key Research and Development Program of China (No. 2016YFD0400605) and the Academic Backbone Project of Northeast Agricultural University (15XG23) supported this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shah Fahad or Juncai Hou.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, M.A., Fahad, S., Sharif, R. et al. Multifunctional role of brassinosteroid and its analogues in plants. Plant Growth Regul 92, 141–156 (2020). https://doi.org/10.1007/s10725-020-00647-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-020-00647-8

Keywords

Navigation