Skip to main content
Log in

Using nonlinear functions to approximate a new quasi-Newton method for unconstrained optimization problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In order to get a higher order accuracy of approximating the Hessian matrix of the objective function, we use the chain rule and propose two modified secant equations. An interesting property of the proposed methods is that these utilize information from two most recent steps where the usual secant equation uses only the latest step information. The other point of interest to one of the proposed methods is that it makes use of both gradient and function value information. We show that the modified BFGS methods based on the new secant equations are globally convergent. The presented experimental results illustrate that the proposed methods are efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Broyden, C. G.: A class of methods for solving nonlinear simultaneous equations. Math. Comp. 19, 577–593 (1965)

    Article  MathSciNet  Google Scholar 

  2. Broyden, C. G.: The convergence of a class of double-rank minimization algorithms: 2. new algorithm. IMA J. Appl. Math. 6(3), 222–231 (1970)

    Article  MathSciNet  Google Scholar 

  3. Byrd, R., Nocedal, J.: A tool for the analysis of quasi-Newton methods with application to unconstrained minimization. SIAM J. Numer. Anal. 26, 727–739 (1989)

    Article  MathSciNet  Google Scholar 

  4. Byrd, R., Nocedal, J., Yuan, Y.: Global convergence of a class of quasi-Newton methods on convex problems. SIAM J. Numer. Anal. 24, 1171–1189 (1987)

    Article  MathSciNet  Google Scholar 

  5. Dai, Y.: Convergence properties of the BFGS algorithm. SIAM J. Optim. 13, 693–701 (2003)

    Article  MathSciNet  Google Scholar 

  6. Dolan, E., Moré, J. J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MathSciNet  Google Scholar 

  7. Ford, J. A., Moghrabi, I. A.: Multi-step quasi-Newton methods for optimization. J. Comput. Appl. Math. 50, 305–323 (1994)

    Article  MathSciNet  Google Scholar 

  8. Ford, J. A., Moghrabi, I. A.: Alternating multi-step quasi-Newton methods for unconstrained optimization. J. Comput. Appl. Math. 82, 105–116 (1997)

    Article  MathSciNet  Google Scholar 

  9. Ford, J. A., Saadallah, A. F.: On the construction of minimisation methods of quasi-Newton type. J. Comput. Appl. Math. 20, 239–246 (1987)

    Article  MathSciNet  Google Scholar 

  10. Gould, N. I. M., Orban, D., Toint, Ph.L.: CUTEr, A constrained and unconstrained testing environment, revisited. ACM Trans. Math. Softw. 29, 373–394 (2003)

    Article  Google Scholar 

  11. Griewank, A.: The global convergence of partioned BFGS on problems with convex decompositons and Lipschitzian gradients. Math. Program. 50, 141–175 (1991)

    Article  Google Scholar 

  12. Li, D. H., Fukushima, M.: On the global convergence of BFGS method for nonconvex unconstrained optimization problems. SIAM J. Optim. 11, 1054–1064 (2001)

    Article  MathSciNet  Google Scholar 

  13. Li, D. H., Fukushima, M.: A modified BFGS method and its global convergence in nonconvex minimization. J. Comput. Appl. Math. 129, 15–35 (2001)

    Article  MathSciNet  Google Scholar 

  14. Mascarenhas, W. F.: The BFGS method with exact line searches fails for non-convex objective functions. Math. Program. 99, 49–61 (2004)

    Article  MathSciNet  Google Scholar 

  15. Moghrabi, I. A.: Multi-Step quasi-Newton Method for Unconstrained Optimization. Ph.D. thesis, Depart. Comput. Sci. Univ. Essex (1993)

  16. Moghrabi, I. A.: Exploiting function values in multi-step method. Int. J. Pure Appl. Math. 28(2), 187–196 (2006)

    MathSciNet  MATH  Google Scholar 

  17. Moghrabi, I. A., Ford, J. A.: A nonlinear model for function-value multistep methods. Comput. Math. Appl. 42, 1157–1164 (2001)

    Article  MathSciNet  Google Scholar 

  18. Nocedal, J., Wright, S. J.: Numerical Optimization. Springer, New York (2006)

    MATH  Google Scholar 

  19. Pearson, J. D.: Variable metric methods of minimization. Comp. J. 12, 171–178 (1969)

    Article  Google Scholar 

  20. Powell, M. J. D.: Some global convergence properties of a variable metric algorithm for minimization without exact line searches. In: Cottle, R.W., Lemke, C.E. (eds.) Nonlinear Programming, SIAM-AMS Proceedings (SIAM publications), vol. 9, pp 53–72 (1976)

  21. Toint, Ph.L.: Global convergence of the partioned BFGS algorithm for convex partially separable opertimization. Math. Program. 36, 290–306 (1986)

    Article  Google Scholar 

  22. Wei, Z., Li, G., Qi, L.: New quasi-Newton methods for unconstrained optimization problems. Appl. Math. Comput. 175, 1156–1188 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Yuan, G., Wei, Z.: Convergence analysis of a modified BFGS method on convex minimizations. Comput. Optim. Appl. 47, 237–255 (2010)

    Article  MathSciNet  Google Scholar 

  24. Zhang, J. Z., Deng, N. Y., Chen, L. H.: New quasi-Newton equation and related methods for unconstrained optimization. J. Optim. Theory Appl. 102, 147–167 (1999)

    Article  MathSciNet  Google Scholar 

  25. Zhang, J. Z., Xu, C. X.: Properties and numerical performance of quasi-Newton methods with modified quasi-Newton equation. J. Comput. Appl. Math. 137, 269–278 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Bidabadi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here, in Table 1, the column headings have the following meanings:

n::

number of variables of the problem

No.::

problem number

Table 1 Test problems taken from CUTEr library

Note 1

Assume that Lj, j = 0, 1, 2 and \( \frac {dX(t)}{dt} \) defined by (9) and (18), respectively, then we have

$$ \begin{array}{lll} {\int}_{-1}^{1} L_{2}(t) \frac{dX(t)}{dt}dt& =&{\int}_{-1}^{1} \frac{t(t+1)}{2} \left( \frac{(1+2t)}{2}s_{k}+\frac{(1-2t)}{2}s_{k-1}\right)dt \\ \\ & &={\int}_{-1}^{1} \frac{t(t+1)(1+2t)}{4}s_{k}dt+{\int}_{-1}^{1} \frac{t(t+1)(1-2t)}{4}s_{k-1}dt \\ \\ & &=\frac{1}{2}(s_{k}-\frac{1}{3}s_{k-1}), \end{array} $$
$$ \begin{array}{lll} {\int}_{-1}^{1} L_{1}(t) \frac{dX(t)}{dt}dt& =&{\int}_{-1}^{1} (1-t^{2}) \left( \frac{(1+2t)}{2}s_{k}+\frac{(1-2t)}{2}s_{k-1}\right)dt \\ \\ & &={\int}_{-1}^{1} \frac{(1-t^{2})(1+2t)}{2}s_{k}dt+{\int}_{-1}^{1} \frac{(1-t^{2})(1-2t)}{2}s_{k-1}dt \\ \\ & &=\frac{2}{3}(s_{k}+s_{k-1}), \end{array} $$

and

$$ \begin{array}{lll} {\int}_{-1}^{1} L_{0}(t) \frac{dX(t)}{dt}dt& =&{\int}_{-1}^{1} (\frac{t(t-1)}{2}) \left( \frac{(1+2t)}{2}s_{k}+\frac{(1-2t)}{2}s_{k-1}\right)dt \\ \\ & &={\int}_{-1}^{1} \frac{t(t-1)(1+2t)}{4}s_{k}dt+{\int}_{-1}^{1} \frac{t(t-1)(1-2t)}{4}s_{k-1}dt \\ \\ & &=\frac{1}{2}(-\frac{1}{3}s_{k}+s_{k-1}). \end{array} $$

Note 2

Assume that Lj, j = 0, 1, 2 and \( \frac {dx(t,\theta )}{dt} \) defined by (9) and (11), respectively, then we have

$$ \begin{array}{lll} {\int}_{-1}^{1} L_{0}(t) \frac{dX(t)}{dt}dt& =&{\int}_{-1}^{1} \frac{t(t-1)}{2} \left( \frac{(1+2t)}{2{\cos}h(\theta)}x_{k+1}-2tx_{k}+\frac{(2t-1)}{2{\cos}h(\theta)}x_{k-1}\right) {\cos}h(t\theta)dt \\ \\ & &+{\int}_{-1}^{1} \frac{t(t-1)}{2} \left( \frac{t(t+1)}{2{\cos}h(\theta)}x_{k+1}+(1-t^{2})x_{k}+\frac{t(t-1)}{2{\cos}h(\theta)}x_{k-1}\right)\theta {\sin}h(t\theta)dt \\ \\ &=& \left[ \frac{-1}{2\theta}{\tan}h(\theta)+\frac{1}{\theta^{2}}-\frac{1}{\theta^{3}}{\tan}h(\theta)\right] s_{k} \\ \\ &&+ \left[ \frac{-1}{2\theta}{\tan}h(\theta)+\frac{1}{\theta^{2}}-\frac{1}{\theta^{3}}{\tan}h(\theta)+\frac{2}{\theta^{2}}{\cos}h(\theta)-\frac{2}{\theta^{3}}{\sin}h(\theta)\right] s_{k-1} \\ \\ & & +\left[ -1+ \frac{1}{\theta}{\tan}h(\theta)-\frac{2}{\theta^{2}}-\frac{2}{\theta^{3}}{\tan}h(\theta)+\frac{2}{\theta^{2}}{\cos}h(\theta)-\frac{2}{\theta^{3}}{\sin}h(\theta)\right] x_{k-1}. \end{array} $$

Similarly

$$ \begin{array}{l} {\int}_{-1}^{1} L_{1}(t) \frac{dX(t)}{dt}dt= \left[ \frac{1}{\theta}{\tan}h(\theta)-\frac{2}{\theta^{2}}+\frac{2}{\theta^{3}}{\tan}h(\theta)\right] s_{k}\\ \\ + \left[ \frac{1}{\theta}{\tan}h(\theta)-\frac{2}{\theta^{2}}+\frac{2}{\theta^{3}}{\tan}h(\theta)-2{\cos}h(\theta)+\frac{12}{\theta}{\sin}h(\theta)-\frac{24}{\theta^{2}}{\cos}h(\theta)+\frac{24}{\theta^{3}}{\sin}h(\theta)\right] s_{k-1}\\ \\ + \left[ \frac{-1}{\theta}{\tan}h(\theta)+\frac{2}{\theta^{2}}-\frac{2}{\theta^{3}}{\tan}h(\theta)-2{\cos}h(\theta)+\frac{12}{\theta}{\sin}h(\theta)-\frac{24}{\theta^{2}}{\cos}h(\theta)+\frac{24}{\theta^{3}}{\sin}h(\theta)\right] x_{k-1} \end{array} $$

and

$$ \begin{array}{l} {\int}_{-1}^{1} L_{2}(t) \frac{dX(t)}{dt}dt =\left[ 1-\frac{3}{2\theta}{\tan}h(\theta)+\frac{3}{\theta^{2}}-\frac{3}{\theta^{3}}{\tan}h(\theta)\right] s_{k}\\ \\ ~~~~~~~+ \left[ 1-\frac{3}{2\theta}{\tan}h(\theta)+\frac{3}{\theta^{2}}-\frac{3}{\theta^{3}}{\tan}h(\theta)-\frac{2}{\theta^{2}}{\cos}h(\theta)+\frac{2}{\theta^{3}}{\sin}h(\theta)\right] s_{k-1}\\ \\ ~~~~~~~~+ \left[ 1-\frac{1}{\theta}{\tan}h(\theta)+\frac{2}{\theta^{2}}-\frac{2}{\theta^{3}}{\tan}h(\theta)-\frac{2}{\theta^{2}}{\cos}h(\theta)+\frac{2}{\theta^{3}}{\sin}h(\theta)\right] x_{k-1} \end{array} $$

Proof of Lemma 2:

Proof Let ξk denote the angle between \(s^{\ast }_{k}\) and \(B_{k} s^{\ast }_{k}\), that is,

$$ \cos \xi_{k} = \frac{{s^{\ast}_{k}}^{T}B_{k} s^{\ast}_{k}}{\Vert s^{\ast}_{k}\Vert \Vert B_{k} s^{\ast}_{k}\Vert}, $$
(57)

and

$$ q_{k} = \frac{{s^{\ast}_{k}}^{T}B_{k} s^{\ast}_{k}}{ {s^{\ast}_{k}}^{T}s^{\ast}_{k}}. $$
(58)

By taking the trace of both sides of (3), we obtain

$$ Tr (B_{k+1})=Tr(B_{k})-\frac{\Vert B_{k} s^{\ast}_{k}\Vert^{2}}{s^{\ast}_{k} B_{k} s^{\ast}_{k}}+\frac{\Vert y_{k}^{\ast} \Vert^{2}}{{y_{k}^{\ast}}^{T} s^{\ast}_{k}}. $$
(59)

where Tr(B) denotes the trace of B. On the other hand we have (see [19]):

$$ Det(B_{k+1})=Det(B_{k})\frac{{s^{\ast}_{k}}^{T} y_{k}^{\ast} }{{s^{\ast}_{k}}^{T} B_{k} s^{\ast}_{k} }, $$
(60)

where Det(B) is the determinant of B. Let

$$ \psi(B)=Tr(B)-\ln(Det(B)), $$
(61)

where B is a positive definite matrix. Using (59), (60) and (61), we obtain

$$\psi(B_{k+1})=\psi(B_{k})-\frac{\Vert B_{k} s^{\ast}_{k}\Vert^{2}}{s^{\ast}_{k} B_{k} s^{\ast}_{k}}+\frac{\Vert y_{k}^{\ast} \Vert^{2}}{{y_{k}^{\ast} }^{T} s^{\ast}_{k}}-\ln(\frac{{s^{\ast}_{k}}^{T} y_{k}^{\ast} }{{s^{\ast}_{k}}^{T} B_{k} s^{\ast}_{k} })$$
$$ =\psi(B_{k})-[\frac{\Vert B_{k} s^{\ast}_{k}\Vert \Vert s_{k}\Vert}{s^{\ast}_{k} B_{k} s^{\ast}_{k}}]^{2} \frac{s^{\ast}_{k} B_{k} s^{\ast}_{k}}{{s^{\ast}_{k}}^{T} s^{\ast}_{k}}+\frac{\Vert y_{k}^{\ast} \Vert^{2}}{{y_{k}^{\ast} }^{T} s^{\ast}_{k}}-\ln(\frac{{s^{\ast}_{k}}^{T} y_{k}^{\ast} }{{s^{\ast}_{k}}^{T} s_{k}^{\ast}}\frac{{s^{\ast}_{k}}^{T} s_{k}^{\ast}}{{s^{\ast}_{k}}^{T} B_{k} s^{\ast}_{k} }). $$
(62)

From the definitions (57) and (58), the relation (62) can be written as

$$\psi(B_{k+1})=\psi(B_{k})+\frac{\Vert y_{k}^{\ast} \Vert^{2}}{{y_{k}^{\ast}}^{T} s^{\ast}_{k}}-\ln(\frac{{s^{\ast}_{k}}^{T} y_{k}^{\ast} }{{s^{\ast}_{k}}^{T} s_{k}^{\ast}})-\frac{q_{k}}{ \cos^{2} \xi_{k}}+\ln(q_{k})$$
$$=\psi(B_{k})+\frac{\Vert y_{k}^{\ast} \Vert^{2}}{{y_{k}^{\ast} }^{T} s^{\ast}_{k}}-1-\ln(\frac{{s^{\ast}_{k}}^{T} y_{k}^{\ast} }{{s^{\ast}_{k}}^{T} s_{k}^{\ast}})+\ln (\cos^{2} \xi_{k})$$
$$ +[1-\frac{q_{k}}{ \cos^{2} \xi_{k}}+\ln (\frac{q_{k}}{ \cos^{2} \xi_{k}})]. $$
(63)

From (49) and (63), we have

$$\psi(B_{k+1})\leq\psi(B_{1})+(M-1-\ln(m))k$$
$$ +{\sum}_{j=1}^{k} \left( \ln(\cos^{2} \xi_{j})+1-\frac{q_{j}}{ \cos^{2} \xi_{j}}+\ln (\frac{q_{j}}{ \cos^{2} \xi_{j}})\right). $$
(64)

On the other hand, from definition of ψ(B), we have

$$ \psi(B)= {\sum}_{i=1}^{n}(\lambda_{i}-\ln(\lambda_{i})), $$

where 0 < λ1λ2 ≤ ... ≤ λn are the eigenvalues of B. Therefore we have

$$ \psi(B)>0. $$

This, together with (64), result in

$$ \frac{1}{k} {\sum}_{j=1}^{k} \eta_{j}\leq {\psi(B_{1})}+(M-1-\ln(m)) . $$
(65)

where

$$ \eta_{j}=- \ln(\cos^{2} \xi_{j}) -\left[1-\frac{q_{j}}{ \cos^{2} \xi_{j}}+\ln (\frac{q_{j}}{ \cos^{2} \xi_{j}})\right]. $$
(66)

Note that the function

$$ u(t)=1-t+\ln (t), $$

is nonpositive for all t > 0, therefore we have ηj ≥ 0, ∀j. Let us now define Jk to be a set consisting of the ⌈pk⌉ indices corresponding to the ⌈pk⌉ smallest values of ηj, for jk, and let \(\eta _{m_{k}}\) denote the largest of the ηj for jJk. Then

$$ \begin{array}{ll} \frac{1}{k} {\sum}_{j=1}^{k} \eta_{j} & =\frac{1}{k}\left[{\sum}_{j=1, j\in J_{k}}^{k} \eta_{j}+ {\sum}_{j=1, j\notin J_{k}}^{k} \eta_{j}\right]\geq\frac{1}{k}\left[\eta_{m_{k}}+ {\sum}_{j=1, j\notin J_{k}}^{k} \eta_{j}\right]\\ & \geq\frac{1}{k}\left[\eta_{m_{k}}+ {\sum}_{j=1, j\notin J_{k}}^{k} \eta_{m_{k}}\right]=\frac{\eta_{m_{k}}}{k}\left[1+ {\sum}_{j=1, j\notin J_{k}}^{k} 1\right]\\ & =\frac{\eta_{m_{k}}}{k}(k+1-\lceil pk\rceil) =\eta_{m_{k}}(1-\frac{\lfloor pk\rfloor}{k})\geq \eta_{m_{k}} (1-p). \end{array} $$

This together with (65) yields

$$ \eta_{j}\leq\eta_{m_{k}}\leq\frac{1}{(1-p)}[\psi(B_{1})+M-1-\ln(m)]=\beta_{0},~~\forall j\in J_{k}. $$
(67)

From the fact that the term inside the brackets in (66) is less than or equal to zero, using (66) and (67) we conclude that,

$$ -\ln(\cos^{2} \xi_{j})<\beta_{0},~~\forall j\in J_{k}. $$
(68)

Therefore,

$$ \cos \xi_{j}>e^{-\beta_{0}/2}\equiv\beta_{1},~~\forall j\in J_{k}. $$
(69)

In addition, using (66) and (68), we get

$$ 1-\frac{q_{j}}{ \cos^{2} \xi_{j}}+\ln (\frac{q_{j}}{ \cos^{2} \xi_{j}})\geq - \beta_{0},~~\forall j\in J_{k}. $$
(70)

Since, the function u(t) achieves its maximum value at t = 1, and satisfies \(u(t)\rightarrow -\infty \) both as \(t\rightarrow 0\) and as \(t\rightarrow \infty \). Therefore, it follows that

$$ 0< \tilde{\beta}_{2}\leq\frac{q_{j}}{ \cos^{2} \xi_{j}}\leq \beta_{3},~~\forall j\in J_{k}, $$
(71)

where \(\tilde {\beta }_{2}\) and β3 are positive constants.

Now, using (69) and (71), we obtain

$$ {\beta^{2}_{1}}\tilde{\beta}_{2}\leq q_{j} \leq \beta_{3}. $$
(72)

Since,

$$ \frac{\Vert B_{j}s^{\ast}_{j} \Vert}{\Vert s^{\ast}_{j}\Vert}=\frac{q_{j}}{\cos \xi_{j}}, $$

we obtain from (69) and (72)

$$ \frac{\Vert B_{j}s^{\ast}_{j} \Vert}{\Vert s^{\ast}_{j} \Vert}\leq \frac{\beta_{3}}{\beta_{1}},~~\forall j\in J_{k}. $$
(73)

The relations (72) and (73) imply (50) with \(a_{1}= \frac {\beta _{3}}{\beta _{1}},\) \(a_{2}={\beta ^{2}_{1}}\tilde {\beta }_{2}\) and a3 = β3. □

Proof of Lemma 3:

Proof The relation (44) implies

$$ {g_{k-1}^{T}d_{k-1}}\leq -c\Vert g_{k-1}\Vert^{2}, ~~\forall k>0, $$

Therefore

$$ \Vert g_{k-1}\Vert \Vert d_{k-1}\Vert\geq{\vert g_{k-1}^{T}d_{k-1}\vert}>c \Vert g_{k-1}\Vert^{2}, ~~\forall k>0, $$

equivalently,

$$ \Vert s_{k-1}\Vert > c{\alpha_{k-1}}\Vert g_{k-1}\Vert, ~~\forall k>0. $$
(74)

On the other hand, for wk defined by (33), we have

$$ \begin{array}{lll} \vert w_{k}\vert \!&\leq &\! \Vert s_{k-1}\Vert \Vert y_{k}\Vert+\Vert s_{k-1}\Vert\Vert y_{k-1}\Vert +\left\vert(\frac{1}{\theta}+\frac{2}{\theta^{3}}){\tan}h(\theta)-\frac{2}{\theta^{2}}\right\vert \alpha_{k} \Vert s_{k-1}\Vert\Vert g_{k}\Vert \\ &+&\!\left\vert-\frac{2}{\theta^{2}} + (\frac{1}{\theta} + \frac{2}{\theta^{3}}){\tan}h(\theta) - (2 + \frac{24}{\theta^{2}}){\cos}h(\theta) + (\frac{12}{\theta} + \frac{24}{\theta^{3}}){\sin}h(\theta)\right\vert \Vert s_{k-1}\Vert\Vert y_{k-1}\Vert \\ &+&\! \left\vert \frac{2}{\theta^{2}} - (\frac{1}{\theta} + \frac{2}{\theta^{3}}){\tan}h(\theta) - (2 + \frac{24}{\theta^{2}}){\cos}h(\theta) + (\frac{12}{\theta}+\frac{24}{\theta^{3}}){\sin}h(\theta)\right\vert \Vert y_{k-1}\Vert \Vert x_{k-1}\Vert \\ &+&\! \left\vert \frac{1}{\theta^{2}}-(\frac{1}{2\theta}+\frac{1}{\theta^{3}}){\tan}h(\theta)\right\vert \alpha_{k-1}\Vert g_{k-1}\Vert\Vert s_{k}\Vert \\ &+&\! \left\vert\frac{1}{\theta^{2}}-(\frac{1}{2\theta}+\frac{1}{\theta^{3}}){\tan}h(\theta)+\frac{2}{\theta^{2}}{\cos}h(\theta)-\frac{2}{\theta^{3}}{\sin}h(\theta)\right\vert \alpha_{k-1}\Vert s_{k-1}\Vert\Vert g_{k-1}\Vert \\ &+&\!\left\vert -1 - \frac{2}{\theta^{2}}+ (\frac{1}{\theta} - 1\frac{2}{\theta^{3}}){\tan}h(\theta)+ \frac{2}{\theta^{2}}{\cos}h(\theta) - \frac{2}{\theta^{3}}{\sin}h(\theta)\right\vert \alpha_{k-1}\Vert g_{k-1}\Vert \Vert x_{k-1}\Vert \end{array} $$

From this fact |θ| > μ1 we can deduce that there exist positive constants κ1, κ2,..., κ6 such that

$$ \begin{array}{lll} \vert w_{k}\vert &\leq & \Vert s_{k-1}\Vert \Vert y_{k}\Vert+\Vert s_{k-1}\Vert\Vert y_{k-1}\Vert +\kappa_{1}\alpha_{k} \Vert s_{k-1}\Vert\Vert g_{k}\Vert +\kappa_{2} \Vert s_{k-1}\Vert\Vert y_{k-1}\Vert \\&&+ \kappa_{3} \Vert y_{k-1}\Vert \Vert x_{k-1}\Vert \\ \\ &+& \kappa_{4} \alpha_{k-1}\Vert g_{k-1}\Vert\Vert s_{k}\Vert +\kappa_{5}\alpha_{k-1}\Vert s_{k-1}\Vert\Vert g_{k-1}\Vert +\kappa_{6}\alpha_{k-1}\Vert g_{k-1}\Vert \Vert x_{k-1}\Vert \\ \\ &\leq &L \Vert s_{k-1}\Vert \Vert s_{k}\Vert+L\Vert s_{k-1}\Vert^{2} +\kappa_{1}\alpha_{k}\Vert s_{k-1}\Vert g_{k}\Vert +\kappa_{2} L\Vert s_{k-1}\Vert^{2} \\&&+ \kappa_{3} L \Vert s_{k-1}\Vert \Vert x_{k-1}\Vert \\ \\ &+& \kappa_{4} \alpha_{k-1}\Vert g_{k-1}\Vert\Vert s_{k}\Vert +\kappa_{5}\alpha_{k-1}\Vert s_{k-1}\Vert\Vert g_{k-1}\Vert +\kappa_{6}\alpha_{k-1}\Vert g_{k-1}\Vert \Vert x_{k-1}\Vert . \end{array} $$

Hence,

$$\begin{array}{lll} \vert w_{k}\vert &\leq &(3L\tau+\kappa_{1}\alpha_{k} \gamma+2\kappa_{2} L\tau+ \kappa_{3} L\tau+ \kappa_{5}\gamma L)\Vert s_{k-1}\Vert \\ && + \kappa_{4} \alpha_{k-1}\Vert g_{k-1}\Vert\Vert s_{k}\Vert +\kappa_{6}\alpha_{k-1}\Vert g_{k-1}\Vert \Vert x_{k-1}\Vert , \end{array}$$

where γ and τ are the same as that given in (41) and (43), respectively. Thus from the definition of \( y_{k}^{\ast } \) and relation (74) we have

$$\begin{array}{lll} \Vert y_{k}^{\ast}\Vert & \leq & \frac{\vert w_{k}\vert}{\Vert s_{k-1}\Vert} \\ & \leq & (3L\tau+\kappa_{1}\alpha_{k} \gamma+2\kappa_{2} L\tau+ \kappa_{3} L\tau+ \kappa_{5}\gamma L) + \kappa_{4}\Vert s_{k}\Vert \frac{ \alpha_{k-1}\Vert g_{k-1}\Vert}{\Vert s_{k-1}\Vert} \\&&+ \kappa_{6}\Vert x_{k-1}\Vert \frac{ \alpha_{k-1}\Vert g_{k-1}\Vert}{\Vert s_{k-1}\Vert} \\ & \leq & (3L\tau+\kappa_{1}\alpha_{k} \gamma+2\kappa_{2} L\tau+ \kappa_{3} L\tau+ \kappa_{5}\gamma L) + \frac{ \kappa_{4}}{c}\Vert s_{k}\Vert +\frac{ \kappa_{6}}{c} \Vert x_{k-1}\Vert \\ & \leq & (3L\tau+\kappa_{1}\alpha_{k} \gamma+2\kappa_{2} L\tau+ \kappa_{3} L\tau+ \kappa_{5}\gamma L) + 2\tau\frac{ \kappa_{4}}{c} +\tau\frac{ \kappa_{6}}{c}. \end{array}$$

Since αk is bounded, this completes the proof. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghani, R., Bidabadi, N. & Hosseini, M.M. Using nonlinear functions to approximate a new quasi-Newton method for unconstrained optimization problems. Numer Algor 87, 755–777 (2021). https://doi.org/10.1007/s11075-020-00986-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00986-7

Keywords

Navigation