Skip to main content
Log in

Enriched Environment and Social Isolation Affect Cognition Ability via Altering Excitatory and Inhibitory Synaptic Density in Mice Hippocampus

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The purpose of the study was to examine whether the underlying mechanism of the alteration of cognitive ability and synaptic plasticity induced by the housing environment is associated with the balance of excitatory/inhibitory synaptic density. Enriched environment (EE) and social isolation (SI) are two different housing environment, and one is to give multiple sensory environments, the other is to give monotonous and lonely environment. Male 4-week-old C57 mice were divided into three groups: CON, EE and SI. They were housed in the different cage until 3 months of age. Morris water maze and novel object recognition were performed. Long term potentiation (LTP), depotentiation (DEP) and local field potentials were recorded in the hippocampal perforant pathway and dentate gyrus (DG) region. The data showed that EE enhanced the ability of spatial learning, reversal learning and memory as well as LTP/DEP in the hippocampal DG region. Meanwhile, SI reduced those abilities and the level of LTP/DEP. Moreover, there were higher couplings of both phase–amplitude and phase–phase in the EE group, and lower couplings of them in the SI group compared to that in the CON group. Western blot and immunofluorescence analysis showed that EE significantly enhanced the level of PSD-95, NR2B and DCX; however, SI reduced them but increased GABAARα1 and decreased DCX levels. The data suggests that the cognitive functions, synaptic plasticity, neurogenesis and neuronal oscillatory patterns were significantly impacted by housing environment via possibly changing the balance of excitatory and inhibitory synaptic density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

AMPA:

A-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid

DEP:

Depotentiation

DG:

Dentate gyrus

EE:

Enriched environment

E/I:

Excitatory/inhibitory

fEPSP:

Field excitatory postsynaptic potential

HG:

High gamma

HRP:

Horseradish peroxidase

IT:

Initial training

LFPs:

Local field potentials

LFS:

Low-frequency afferent stimulation

LG:

Low gamma

LTD:

Long-term depression

LTP:

Long term potentiation

MWM:

Morris water maze

MI:

Modulation index

NMDAR:

N-Methyl-d-aspartic acid receptor

PAC:

Phase–amplitude coupling

PLV:

Phase locking value

PP:

Perforant pathway

PPC:

Phase–phase coupling

PSD:

Power spectrum density

PSD-95:

Postsynaptic density protein 95

PVDF:

Poly vinylidene fluoride

RET:

Reversal exploring test

RI:

Recognition index

RT:

Reversal training

SET:

Space exploring test

SI:

Social isolation

SYP:

Synaptophysin

TBS:

Theta burst stimulation

References

  1. Leggio MG, Mandolesi L, Federico F, Spirito F, Ricci B, Gelfo F, Petrosini L (2005) Environmental enrichment promotes improved spatial abilities and enhanced dendritic growth in the rat. Behav Brain Res 163(1):78–90. https://doi.org/10.1016/j.bbr.2005.04.009

    Article  PubMed  Google Scholar 

  2. Lee EH, Hsu WL, Ma YL, Lee PJ, Chao CC (2003) Enrichment enhances the expression of sgk, a glucocorticoid-induced gene, and facilitates spatial learning through glutamate AMPA receptor mediation. Eur J Neurosci 18(10):2842–2852

    Article  PubMed  Google Scholar 

  3. Bennett JC, McRae PA, Levy LJ, Frick KM (2006) Long-term continuous, but not daily, environmental enrichment reduces spatial memory decline in aged male mice. Neurobiol Learn Mem 85(2):139–152. https://doi.org/10.1016/j.nlm.2005.09.003

    Article  PubMed  Google Scholar 

  4. Malik R, Chattarji S (2012) Enhanced intrinsic excitability and EPSP-spike coupling accompany enriched environment-induced facilitation of LTP in hippocampal CA1 pyramidal neurons. J Neurophysiol 107(5):1366–1378. https://doi.org/10.1152/jn.01009.2011

    Article  PubMed  Google Scholar 

  5. Li HY, Dokas LA, Godfrey DA, Rubin AM (2002) Remodeling of synaptic connections in the deafferented vestibular nuclear complex. J Vestibul Res-Equil 12(4):167–183

    Google Scholar 

  6. Yamada J, Nadanaka S, Kitagawa H, Takeuchi K, Jinno S (2018) Increased synthesis of chondroitin sulfate proteoglycan promotes adult hippocampal neurogenesis in response to enriched environment. J Neurosci 38(39):8496–8513. https://doi.org/10.1523/JNEUROSCI.0632-18.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. West RW, Greenough WT (1972) Effect of environmental complexity on cortical synapses of rats: preliminary results. Behav Biol 7(2):279–284

    Article  CAS  PubMed  Google Scholar 

  8. Greenough WT, Volkmar FR (1973) Pattern of dendritic branching in occipital cortex of rats reared in complex environments. Exp Neurol 40(2):491–504

    Article  CAS  PubMed  Google Scholar 

  9. Singh P, Heera PK, Kaur G (2003) Expression of neuronal plasticity markers in hypoglycemia induced brain injury. Mol Cell Biochem 247(1–2):69–74

    Article  CAS  PubMed  Google Scholar 

  10. Friedler B, Crapser J, McCullough L (2015) One is the deadliest number: the detrimental effects of social isolation on cerebrovascular diseases and cognition. Acta Neuropathol 129(4):493–509. https://doi.org/10.1007/s00401-014-1377-9

    Article  PubMed  Google Scholar 

  11. Bassuk SS, Glass TA, Berkman LF (1999) Social disengagement and incident cognitive decline in community-dwelling elderly persons. Ann Internal Med 131(3):165

    Article  CAS  Google Scholar 

  12. Ertel KA, Glymour MM, Berkman LF (2008) Effects of social integration on preserving memory function in a nationally representative US elderly population. Am J Public Health 98(7):1215–1220. https://doi.org/10.2105/Ajph.2007.113654

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kamal A, Ramakers GM, Altinbilek B, Kas MJ (2014) Social isolation stress reduces hippocampal long-term potentiation: effect of animal strain and involvement of glucocorticoid receptors. Neuroscience 256:262–270. https://doi.org/10.1016/j.neuroscience.2013.10.016

    Article  CAS  PubMed  Google Scholar 

  14. Quan MN, Tian YT, Xu KH, Zhang T, Yang Z (2010) Post weaning social isolation influences spatial cognition, prefrontal cortical synaptic plasticity and hippocampal potassium ion channels in Wistar rats. Neuroscience 169(1):214–222. https://doi.org/10.1016/j.neuroscience.2010.04.048

    Article  CAS  PubMed  Google Scholar 

  15. Almeida FB, Nin MS, Barros HMT (2020) The role of allopregnanolone in depressive-like behaviors: focus on neurotrophic proteins. Neurobiol Stress 12:100218. https://doi.org/10.1016/j.ynstr.2020.100218

    Article  PubMed  PubMed Central  Google Scholar 

  16. Eichenbaum H (1996) Learning from LTP: a comment on recent attempts to identify cellular and molecular mechanisms of memory. Learn Mem 3(2–3):61–73

    Article  CAS  PubMed  Google Scholar 

  17. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39. https://doi.org/10.1038/361031a0

    Article  CAS  PubMed  Google Scholar 

  18. Kulla A, Reymann KG, Manahan-Vaughan D (1999) Time-dependent induction of depotentiation in the dentate gyrus of freely moving rats: involvement of group 2 metabotropic glutamate receptors. Eur J Neurosci 11(11):3864–3872

    Article  CAS  PubMed  Google Scholar 

  19. Zhang T (2011) Neural oscillations and information flow associated with synaptic plasticity. Sheng li xue bao : [Acta physiologica Sinica] 63(5):412–422

    Google Scholar 

  20. Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304(5679):1926–1929. https://doi.org/10.1126/science.1099745

    Article  CAS  PubMed  Google Scholar 

  21. Berman JI, Liu S, Bloy L, Blaskey L, Roberts TP, Edgar JC (2015) Alpha-to-gamma phase-amplitude coupling methods and application to autism spectrum disorder. Brain Connect 5(2):80–90. https://doi.org/10.1089/brain.2014.0242

    Article  PubMed  PubMed Central  Google Scholar 

  22. Xu X, An L, Mi X, Zhang T (2013) Impairment of cognitive function and synaptic plasticity associated with alteration of information flow in theta and gamma oscillations in melamine-treated rats. PLoS ONE 8(10):e77796. https://doi.org/10.1371/journal.pone.0077796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shang X, Xu B, Li Q, Zhai B, Xu X, Zhang T (2017) Neural oscillations as a bridge between glutamatergic system and emotional behaviors in simulated microgravity-induced mice. Behav Brain Res 317:286–291. https://doi.org/10.1016/j.bbr.2016.09.063

    Article  CAS  PubMed  Google Scholar 

  24. Li Q, Zheng CG, Cheng N, Wang YY, Yin T, Zhang T (2016) Two generalized algorithms measuring phase-amplitude cross-frequency coupling in neuronal oscillations network. Cogn Neurodyn 10(3):235–243. https://doi.org/10.1007/s11571-015-9369-6

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zheng C, Zhang T (2013) Alteration of phase-phase coupling between theta and gamma rhythms in a depression-model of rats. Cogn Neurodyn 7(2):167–172. https://doi.org/10.1007/s11571-012-9225-x

    Article  PubMed  Google Scholar 

  26. Paxinos GF, Franklin K (2003) The mouse brain in stereotaxic coordinates. Elsevier Academic Press, San Diego

    Google Scholar 

  27. Lachaux JP, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8(4):194–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu XX, Zheng CG, Zhang T (2013) Reduction in LFP cross-frequency coupling between theta and gamma rhythms associated with impaired STP and LTP in a rat model of brain ischemia. Front Comput Neurosci 7(4):1–8. https://doi.org/10.3389/Fncom.2013.00027

    Article  Google Scholar 

  29. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009

    Article  PubMed  Google Scholar 

  30. Tass P, Rosenblum MG, Weule J, Kurths J, Pikovsky A, Volkmann J, Schnitzler A, Freund HJ (1998) Detection of n:m phase locking from noisy data: application to magnetoencephalography. Phys Rev Lett 81(15):3291–3294. https://doi.org/10.1103/PhysRevLett.81.3291

    Article  CAS  Google Scholar 

  31. Belluscio MA, Mizuseki K, Schmidt R, Kempter R, Buzsaki G (2012) Cross-frequency phase–phase coupling between theta and gamma oscillations in the hippocampus. J Neurosci 32(2):423–435. https://doi.org/10.1523/Jneurosci.4122-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu C, Xu X, Gao J, Zhang T, Yang Z (2015) Hydrogen sulfide prevents synaptic plasticity from VD-induced damage via Akt/GSK-3beta pathway and notch signaling pathway in rats. Mol Neurobiol. https://doi.org/10.1007/s12035-015-9324-x

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fu J, Wang H, Gao J, Yu M, Wang R, Yang Z, Zhang T (2016) Rapamycin effectively impedes melamine-induced impairments of cognition and synaptic plasticity in Wistar rats. Mol Neurobiol. https://doi.org/10.1007/s12035-016-9687-7

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang H, Gao N, Li Z, Yang Z, Zhang T (2016) Autophagy alleviates melamine-induced cell death in PC12 cells via decreasing ROS level. Mol Neurobiol 53(3):1718–1729. https://doi.org/10.1007/s12035-014-9073-2

    Article  CAS  PubMed  Google Scholar 

  35. Squire LR, Stark CE, Clark RE (2004) The medial temporal lobe. Annu Rev Neurosci 27:279–306. https://doi.org/10.1146/annurev.neuro.27.070203.144130

    Article  CAS  PubMed  Google Scholar 

  36. Mumby DG, Glenn MJ, Nesbitt C, Kyriazis DA (2002) Dissociation in retrograde memory for object discriminations and object recognition in rats with perirhinal cortex damage. Behav Brain Res 132(2):215–226

    Article  PubMed  Google Scholar 

  37. de Jong IC, Prelle IT, van de Burgwal JA, Lambooij E, Korte SM, Blokhuis HJ, Koolhaas JM (2000) Effects of environmental enrichment on behavioral responses to novelty, learning, and memory, and the circadian rhythm in cortisol in growing pigs. Physiol Behav 68(4):571–578

    Article  PubMed  Google Scholar 

  38. Ibi D, Takuma K, Koike H, Mizoguchi H, Tsuritani K, Kuwahara Y, Kamei H, Nagai T, Yoneda Y, Nabeshima T, Yamada K (2008) Social isolation rearing-induced impairment of the hippocampal neurogenesis is associated with deficits in spatial memory and emotion-related behaviors in juvenile mice. J Neurochem 105(3):921–932. https://doi.org/10.1111/j.1471-4159.2007.05207.x

    Article  CAS  PubMed  Google Scholar 

  39. Martin SJ, Grimwood PD, Morris RG (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23:649–711. https://doi.org/10.1146/annurev.neuro.23.1.649

    Article  CAS  PubMed  Google Scholar 

  40. Zhang L, Meng K, Li YH, Han TZ (2009) NR2A-containing NMDA receptors are required for L-LTP induction and depotentiation in CA1 region of hippocampal slices. Eur J Neurosci 29(11):2137–2144. https://doi.org/10.1111/j.1460-9568.2009.06783.x

    Article  CAS  PubMed  Google Scholar 

  41. Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84(1):87–136. https://doi.org/10.1152/physrev.00014.2003

    Article  CAS  PubMed  Google Scholar 

  42. Lin CH, Lee CC, Huang YC, Wang SJ, Gean PW (2005) Activation of group II metabotropic glutamate receptors induces depotentiation in amygdala slices and reduces fear-potentiated startle in rats. Learn Mem 12(2):130–137. https://doi.org/10.1101/lm.85304

    Article  PubMed  PubMed Central  Google Scholar 

  43. Morato X, Goncalves FQ, Lopes JP, Jauregui O, Soler C, Fernandez-Duenas V, Cunha RA, Ciruela F (2019) Chronic adenosine A2A receptor blockade induces locomotor sensitization and potentiates striatal LTD IN GPR37-deficient mice. J Neurochem 148(6):796–809. https://doi.org/10.1111/jnc.14653

    Article  CAS  PubMed  Google Scholar 

  44. Cameron HA, Gould E (1994) Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neuroscience 61(2):203–209

    Article  CAS  PubMed  Google Scholar 

  45. Ryan SM, Nolan YM (2016) Neuroinflammation negatively affects adult hippocampal neurogenesis and cognition: can exercise compensate? Neurosci Biobehav R 61:121–131. https://doi.org/10.1016/j.neubiorev.2015.12.004

    Article  CAS  Google Scholar 

  46. Breton-Provencher V, Cote D, Saghatelyan A (2014) Activity of the principal cells of the olfactory bulb promotes a structural dynamic on the distal dendrites of immature adult-born granule cells via activation of NMDA receptors. J Neurosci 34(5):1748–1759. https://doi.org/10.1523/Jneurosci.3013-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schmitt U, Tanimoto N, Seeliger M, Schaeffel F, Leube RE (2009) Detection of behavioral alterations and learning deficits in mice lacking synaptophysin. Neuroscience 162(2):234–243. https://doi.org/10.1016/j.neuroscience.2009.04.046

    Article  CAS  PubMed  Google Scholar 

  48. Beique JC, Andrade R (2003) PSD-95 regulates synaptic transmission and plasticity in rat cerebral cortex. J Physiol 546(Pt 3):859–867

    Article  CAS  PubMed  Google Scholar 

  49. Calhoun ME, Jucker M, Martin LJ, Thinakaran G, Price DL, Mouton PR (1996) Comparative evaluation of synaptophysin-based methods for quantification of synapses. J Neurocytol 25(12):821–828

    Article  CAS  PubMed  Google Scholar 

  50. Chen X, Levy JM, Hou A, Winters C, Azzam R, Sousa AA, Leapman RD, Nicoll RA, Reese TS (2015) PSD-95 family MAGUKs are essential for anchoring AMPA and NMDA receptor complexes at the postsynaptic density. Proc Natl Acad Sci USA 112(50):E6983–6992. https://doi.org/10.1073/pnas.1517045112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2(10):704–716. https://doi.org/10.1038/35094565

    Article  CAS  PubMed  Google Scholar 

  52. Fell J, Axmacher N (2011) The role of phase synchronization in memory processes. Nat Rev Neurosci 12(2):105–118. https://doi.org/10.1038/nrn2979

    Article  CAS  PubMed  Google Scholar 

  53. Jokisch D, Jensen O (2007) Modulation of gamma and alpha activity during a working memory task engaging the dorsal or ventral stream. J Neurosci 27(12):3244–3251. https://doi.org/10.1523/Jneurosci.5399-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sauseng P, Klimesch W, Heise KF, Gruber WR, Holz E, Karim AA, Glennon M, Gerloff C, Birbaumer N, Hummel FC (2009) Brain oscillatory substrates of visual short-term memory capacity. Curr Biol 19(21):1846–1852. https://doi.org/10.1016/j.cub.2009.08.062

    Article  CAS  PubMed  Google Scholar 

  55. Jensen O, Gelfand J, Kounios J, Lisman JE (2002) Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cereb Cortex 12(8):877–882

    Article  PubMed  Google Scholar 

  56. Palva S, Linkenkaer-Hansen K, Naatanen R, Palva JM (2005) Early neural correlates of conscious somatosensory perception. J Neurosci 25(21):5248–5258. https://doi.org/10.1523/JNEUROSCI.0141-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Buffalo EA, Fries P, Landman R, Buschman TJ, Desimone R (2011) Laminar differences in gamma and alpha coherence in the ventral stream. Proc Natl Acad Sci USA 108(27):11262–11267. https://doi.org/10.1073/pnas.1011284108

    Article  PubMed  PubMed Central  Google Scholar 

  58. Fink A, Benedek M, Grabner RH, Staudt B, Neubauer AC (2007) Creativity meets neuroscience: experimental tasks for the neuroscientific study of creative thinking. Methods 42(1):68–76. https://doi.org/10.1016/j.ymeth.2006.12.001

    Article  CAS  PubMed  Google Scholar 

  59. Freyer F, Becker R, Dinse HR, Ritter P (2013) State-dependent perceptual learning. J Neurosci 33(7):2900–2907. https://doi.org/10.1523/JNEUROSCI.4039-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gruber T, Muller MM (2002) Effects of picture repetition on induced gamma band responses, evoked potentials, and phase synchrony in the human EEG. Cogn Brain Res 13(3):377–392. https://doi.org/10.1016/S0926-6410(01)00130-6

    Article  Google Scholar 

  61. Babiloni C, Babiloni F, Carducci F, Cincotti F, Rosciarelli F, Arendt-Nielsen L, Chen AC, Rossini PM (2002) Human brain oscillatory activity phase-locked to painful electrical stimulations: a multi-channel EEG study. Hum Brain Mapp 15(2):112–123

    Article  PubMed  Google Scholar 

  62. Tallon-Baudry C, Bertrand O, Peronnet F, Pernier J (1998) Induced gamma-band activity during the delay of a visual short-term memory task in humans. J Neurosci 18(11):4244–4254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bahramisharif A, van Gerven MAJ, Aarnoutse EJ, Mercier MR, Schwartz TH, Foxe JJ, Ramsey NF, Jensen O (2013) Propagating neocortical gamma bursts are coordinated by traveling alpha waves. J Neurosci 33(48):18849–18854. https://doi.org/10.1523/Jneurosci.2455-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Foster BL, Parvizi J (2012) Resting oscillations and cross-frequency coupling in the human posteromedial cortex. Neuroimage 60(1):384–391. https://doi.org/10.1016/j.neuroimage.2011.12.019

    Article  PubMed  Google Scholar 

  65. Roux F, Wibral M, Singer W, Aru J, Uhlhaas PJ (2013) The phase of thalamic alpha activity modulates cortical gamma-band activity: evidence from resting-state MEG recordings. J Neurosci 33(45):17827–17835. https://doi.org/10.1523/JNEUROSCI.5778-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Castellano C, Cestari V, Ciamei A (2001) NMDA receptors and learning and memory processes. Curr Drug Targets 2(3):273–283

    Article  CAS  PubMed  Google Scholar 

  67. Bear MF, Malenka RC (1994) Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol 4(3):389–399

    Article  CAS  PubMed  Google Scholar 

  68. Dudek SM, Bear MF (1992) Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-d-aspartate receptor blockade. Proc Natl Acad Sci USA 89(10):4363–4367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sans N, Prybylowski K, Petralia RS, Chang K, Wang YX, Racca C, Vicini S, Wenthold RJ (2003) NMDA receptor trafficking through an interaction between PDZ proteins and the exocyst complex. Nat Cell Biol 5(6):520–530. https://doi.org/10.1038/ncb990

    Article  CAS  PubMed  Google Scholar 

  70. Losi G, Prybylowski K, Fu Z, Luo J, Wenthold RJ, Vicini S (2003) PSD-95 regulates NMDA receptors in developing cerebellar granule neurons of the rat. J Physiol 548(Pt 1):21–29. https://doi.org/10.1113/jphysiol.2002.034918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kornau HC, Schenker LT, Kennedy MB, Seeburg PH (1995) Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269(5231):1737–1740

    Article  CAS  PubMed  Google Scholar 

  72. Lin Y, Skeberdis VA, Francesconi A, Bennett MV, Zukin RS (2004) Postsynaptic density protein-95 regulates NMDA channel gating and surface expression. J Neurosci 24(45):10138–10148. https://doi.org/10.1523/JNEUROSCI.3159-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chapouthier G, Venault P (2002) GABA-A receptor complex and memory processes. Curr Top Med Chem 2(8):841–851

    Article  CAS  PubMed  Google Scholar 

  74. Yazaki-Sugiyama Y, Kang S, Cateau H, Fukai T, Hensch TK (2009) Bidirectional plasticity in fast-spiking GABA circuits by visual experience. Nature 462(7270):218–221. https://doi.org/10.1038/nature08485

    Article  CAS  PubMed  Google Scholar 

  75. Challis C, Boulden J, Veerakumar A, Espallergues J, Vassoler FM, Pierce RC, Beck SG, Berton O (2013) Raphe GABAergic neurons mediate the acquisition of avoidance after social defeat. J Neurosci 33(35):13978–13988. https://doi.org/10.1523/JNEUROSCI.2383-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Milic M, Divljakovic J, Rallapalli S, van Linn ML, Timic T, Cook JM, Savic MM (2012) The role of alpha1 and alpha5 subunit-containing GABAA receptors in motor impairment induced by benzodiazepines in rats. Behav Pharmacol 23(2):191–197. https://doi.org/10.1097/FBP.0b013e3283512c85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM (2011) Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14(3):285–293. https://doi.org/10.1038/nn.2741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fritschy JM, Brunig I (2003) Formation and plasticity of GABAergic synapses: physiological mechanisms and pathophysiological implications. Pharmacol Ther 98(3):299–323

    Article  CAS  PubMed  Google Scholar 

  79. Prange O, Wong TP, Gerrow K, Wang YT, El-Husseini A (2004) A balance between excitatory and inhibitory synapses is controlled by PSD-95 and neuroligin. Proc Natl Acad Sci USA 101(38):13915–13920. https://doi.org/10.1073/pnas.0405939101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gao R, Penzes P (2015) Common mechanisms of excitatory and inhibitory imbalance in schizophrenia and autism spectrum disorders. Curr Mol Med 15(2):146–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Eichler SA, Meier JC (2008) E-I balance and human diseases: from molecules to networking. Front Mol Neurosci 1:2. https://doi.org/10.3389/neuro.02.002.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459(7247):698–702. https://doi.org/10.1038/nature07991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Xu X, Liu C, Li Z, Zhang T (2015) Effects of hydrogen sulfide on modulation of theta-gamma coupling in hippocampus in vascular dementia rats. Brain Topogr. https://doi.org/10.1007/s10548-015-0430-x

    Article  PubMed  Google Scholar 

  84. Li P, Rial D, Canas PM, Yoo JH, Li W, Zhou X, Wang Y, van Westen GJ, Payen MP, Augusto E, Goncalves N, Tome AR, Li Z, Wu Z, Hou X, Zhou Y (2015) Optogenetic activation of intracellular adenosine A2A receptor signaling in the hippocampus is sufficient to trigger CREB phosphorylation and impsair memory. Mol Psychiatry 20(11):1339–1349. https://doi.org/10.1038/mp.2014.182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pagnussat N, Almeida AS, Marques DM, Nunes F, Chenet GC, Botton PH, Mioranzza S, Loss CM, Cunha RA, Porciuncula LO (2015) Adenosine A(2A) receptors are necessary and sufficient to trigger memory impairment in adult mice. Br J Pharmacol 172(15):3831–3845. https://doi.org/10.1111/bph.13180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Viana da Silva S, Haberl MG, Zhang P, Bethge P, Lemos C, Goncalves N, Gorlewicz A, Malezieux M, Goncalves FQ, Grosjean N, Blanchet C, Frick A, Nagerl UV, Cunha RA, Mulle C (2016) Early synaptic deficits in the APP/PS1 mouse model of Alzheimer’s disease involve neuronal adenosine A2A receptors. Nat Commun 7:11915. https://doi.org/10.1038/ncomms11915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ohline SM, Abraham WC (2019) Environmental enrichment effects on synaptic and cellular physiology of hippocampal neurons. Neuropharmacology 145:3–12. https://doi.org/10.1016/j.neuropharm.2018.04.007

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (Grant No. 31771148, 31900733), 111 Project (Grant No. B08011), China Postdoctoral Science Foundation (Grant No. 2019M651012) and the Applied Basic Research Programs of Science and Technology Commission Foundation of Tianjin (Grant No. 18JCYBJC27400).

Author information

Authors and Affiliations

Authors

Contributions

Hui Wang, Xiaxia Xu and Tao Zhang conceived and designed the experiment; Hui Wang, Xiaxia Xu, Xinxin Xu and Jing Gao performed the experiments and analyzed the data; and Hui Wang and Tao Zhang wrote and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tao Zhang.

Ethics declarations

Conflict of interest

We confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Consent for Publication

Not applicable.

Ethics Approval and Consent to Participate

All procedures were carried out according to the NIH Guide for the Care and Use of Laboratory Animals and approved by the Ethical Commission at Nankai University (20160004).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1094 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Xu, X., Xu, X. et al. Enriched Environment and Social Isolation Affect Cognition Ability via Altering Excitatory and Inhibitory Synaptic Density in Mice Hippocampus. Neurochem Res 45, 2417–2432 (2020). https://doi.org/10.1007/s11064-020-03102-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03102-2

Keywords

Navigation