Skip to main content

Advertisement

Log in

Guanosine Promotes Proliferation in Neural Stem Cells from Hippocampus and Neurogenesis in Adult Mice

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neural stem cells can generate new neurons in the mouse adult brain in a complex multistep process called neurogenesis. Several factors regulate this process, including neurotransmitters, hormones, neurotrophic factors, pharmacological agents, and environmental factors. Purinergic signaling, mainly the adenosinergic system, takes part in neurogenesis, being involved in cell proliferation, migration, and differentiation. However, the role of the purine nucleoside guanosine in neurogenesis remains unclear. Here, we examined the effect of guanosine by using the neurosphere assay derived from neural stem cells of adult mice. We found that continuous treatment with guanosine increased the number of neurospheres, neural stem cell proliferation, and neuronal differentiation. The effect of guanosine to increase the number of neurospheres was reduced by removing adenosine from the culture medium. We next traced the neurogenic effect of guanosine in vivo. The intraperitoneal treatment of adult C57BL/6 mice with guanosine (8 mg/kg) for 26 days increased the number of dividing bromodeoxyuridine (BrdU)-positive cells and also increased neurogenesis, as identified by measuring doublecortin (DCX)-positive cells in the dentate gyrus (DG) of the hippocampus. Antidepressant-like behavior in adult mice accompanied the guanosine-induced neurogenesis in the DG. These results provide new evidence of a pro-neurogenic effect of guanosine on neural stem/progenitor cells, and it was associated in vivo with antidepressant-like effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lazarov O, Mattson MP, Peterson DA, Pimplikar SW, van Praag H (2010) When neurogenesis encounters aging and disease. Trends Neurosci 33(12):569–579

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Braun SM, Jessberger S (2014) Adult neurogenesis: mechanisms and functional significance. Development 141(10):1983–1986

    CAS  PubMed  Google Scholar 

  3. Patrício P, Mateus-Pinheiro A, Irmler M, Alves ND, Machado-Santos AR, Morais M, Correia JS, Korostynski M et al (2015) Differential and converging molecular mechanisms of antidepressants’ action in the hippocampal dentate gyrus. Neuropsychopharmacology 40(2):338–349

    PubMed  Google Scholar 

  4. Dong J et al (2019) A neuronal molecular switch through cell-cell contact that regulates quiescent neural stem cells. Sci Adv 5(2):eaav4416

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132(4):645–660

    CAS  PubMed  Google Scholar 

  6. Zhang J, Jiao J (2015) Molecular biomarkers for embryonic and adult neural stem cell and neurogenesis. Biomed Res Int 2015:727542

    PubMed  PubMed Central  Google Scholar 

  7. Lledo PM, Alonso M, Grubb MS (2006) Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7(3):179–193

    CAS  PubMed  Google Scholar 

  8. Urbán N, Guillemot F (2014) Neurogenesis in the embryonic and adult brain: same regulators, different roles. Front Cell Neurosci 8:396

    PubMed  PubMed Central  Google Scholar 

  9. Ribeiro DE, Glaser T, Oliveira-Giacomelli A, Ulrich H (2019) Purinergic receptors in neurogenic processes. Brain Res Bull 151:3–11

  10. Braun N, Sévigny J, Mishra SK, Robson SC, Barth SW, Gerstberger R, Hammer K, Zimmermann H (2003) Expression of the ecto-ATPase NTPDase2 in the germinal zones of the developing and adult rat brain. Eur J Neurosci 17(7):1355–1364

    PubMed  Google Scholar 

  11. Cao X, Li LP, Qin XH, Li SJ, Zhang M, Wang Q, Hu HH, Fang YY et al (2013) Astrocytic adenosine 5′-triphosphate release regulates the proliferation of neural stem cells in the adult hippocampus. Stem Cells 31(8):1633–1643

    CAS  PubMed  Google Scholar 

  12. Lin JH et al (2007) Purinergic signaling regulates neural progenitor cell expansion and neurogenesis. Dev Biol 302(1):356–366

    CAS  PubMed  Google Scholar 

  13. Migita H, Kominami K, Higashida M, Maruyama R, Tuchida N, McDonald F, Shimada F, Sakurada K (2008) Activation of adenosine A1 receptor-induced neural stem cell proliferation via MEK/ERK and Akt signaling pathways. J Neurosci Res 86(13):2820–2828

    CAS  PubMed  Google Scholar 

  14. Lanznaster D, Dal-Cim T, Piermartiri TCB, Tasca CI (2016) Guanosine: a neuromodulator with therapeutic potential in brain disorders. Aging Dis 7(5):657–679

    PubMed  PubMed Central  Google Scholar 

  15. Uemura Y, Miller JM, Matson WR, Beal MF (1991) Neurochemical analysis of focal ischemia in rats. Stroke 22(12):1548–1553

    CAS  PubMed  Google Scholar 

  16. Ciccarelli R, di Iorio P, Giuliani P, D'Alimonte I, Ballerini P, Caciagli F, Rathbone MP (1999) Rat cultured astrocytes release guanine-based purines in basal conditions and after hypoxia/hypoglycemia. Glia 25(1):93–98

    CAS  PubMed  Google Scholar 

  17. Robertson CL, Bell MJ, Kochanek PM, Adelson PD, Ruppel RA, Carcillo JA, Wisniewski SR, Mi Z et al (2001) Increased adenosine in cerebrospinal fluid after severe traumatic brain injury in infants and children: association with severity of injury and excitotoxicity. Crit Care Med 29(12):2287–2293

    CAS  PubMed  Google Scholar 

  18. Zimmermann H, Zebisch M, Sträter N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8(3):437–502

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Rathbone MP, Middlemiss P, Andrew C, Caciagli F, Ciccarelli R, Iorio PD, Huang R (1998) The trophic effects of purines and purinergic signaling in pathologic reactions of astrocytes. Alzheimer Dis Assoc Disord 12(Suppl 2):S36–S45

    CAS  PubMed  Google Scholar 

  20. Ciccarelli R, Ballerini P, Sabatino G, Rathbone MP, D'Onofrio M, Caciagli F, di Iorio P (2001) Involvement of astrocytes in purine-mediated reparative processes in the brain. Int J Dev Neurosci 19(4):395–414

    CAS  PubMed  Google Scholar 

  21. Su C, Wang P, Jiang C, Ballerini P, Caciagli F, Rathbone MP, Jiang S (2013) Guanosine promotes proliferation of neural stem cells through cAMP-CREB pathway. J Biol Regul Homeost Agents 27(3):673–680

    CAS  PubMed  Google Scholar 

  22. Dal-Cim T, Ludka FK, Martins WC, Reginato C, Parada E, Egea J, López MG, Tasca CI (2013) Guanosine controls inflammatory pathways to afford neuroprotection of hippocampal slices under oxygen and glucose deprivation conditions. J Neurochem 126(4):437–450

    CAS  PubMed  Google Scholar 

  23. Dal-Cim T, Poluceno GG, Lanznaster D, de Oliveira KA, Nedel CB, Tasca CI (2019) Guanosine prevents oxidative damage and glutamate uptake impairment induced by oxygen/glucose deprivation in cortical astrocyte cultures: involvement of a. Purinergic Signal 15:465–476

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Decker H, Piermartiri TCB, Nedel CB, Romão LF, Francisco SS, Dal-Cim T, Boeck CR, Moura-Neto V et al (2019) Guanosine and GMP increase the number of granular cerebellar neurons in culture: dependence on adenosine A. Purinergic Signal 15:439–450

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang S, Ballerini P, Buccella S, Giuliani P, Jiang C, Huang X, Rathbone MP (2008) Remyelination after chronic spinal cord injury is associated with proliferation of endogenous adult progenitor cells after systemic administration of guanosine. Purinergic Signal 4(1):61–71

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Su C, Elfeki N, Ballerini P, D'Alimonte I, Bau C, Ciccarelli R, Caciagli F, Gabriele J et al (2009) Guanosine improves motor behavior, reduces apoptosis, and stimulates neurogenesis in rats with parkinsonism. J Neurosci Res 87(3):617–625

    CAS  PubMed  Google Scholar 

  27. Bettio LE et al (2016) The antidepressant-like effect of chronic guanosine treatment is associated with increased hippocampal neuronal differentiation. Eur J Neurosci 43(8):1006–1015

    PubMed  Google Scholar 

  28. Guo W, Patzlaff NE, Jobe EM, Zhao X (2012) Isolation of multipotent neural stem or progenitor cells from both the dentate gyrus and subventricular zone of a single adult mouse. Nat Protoc 7(11):2005–2012

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Walker TL, Kempermann G (2014) One mouse, two cultures: isolation and culture of adult neural stem cells from the two neurogenic zones of individual mice. J Vis Exp 84:e51225

    Google Scholar 

  30. Dal-Cim T, Martins WC, Thomaz DT, Coelho V, Poluceno GG, Lanznaster D, Vandresen-Filho S, Tasca CI (2016) Neuroprotection promoted by guanosine depends on glutamine synthetase and glutamate transporters activity in hippocampal slices subjected to oxygen/glucose deprivation. Neurotox Res 29(4):460–468

    CAS  PubMed  Google Scholar 

  31. Lee JH, Shaker MR, Lee E, Lee B, Sun W (2020) NeuroCore formation during differentiation of neurospheres of mouse embryonic neural stem cells. Stem Cell Res 43:101691

    CAS  PubMed  Google Scholar 

  32. Sasaki R, Aoki S, Yamato M, Uchiyama H, Wada K, Ogiuchi H, Okano T, Ando T (2010) A protocol for immunofluorescence staining of floating neurospheres. Neurosci Lett 479(2):126–127

    CAS  PubMed  Google Scholar 

  33. Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463(1–3):3–33

    CAS  PubMed  Google Scholar 

  34. Ennaceur A, Neave N, Aggleton JP (1997) Spontaneous object recognition and object location memory in rats: the effects of lesions in the cingulate cortices, the medial prefrontal cortex, the cingulum bundle and the fornix. Exp Brain Res 113(3):509–519

    CAS  PubMed  Google Scholar 

  35. Assini FL, Duzzioni M, Takahashi RN (2009) Object location memory in mice: pharmacological validation and further evidence of hippocampal CA1 participation. Behav Brain Res 204(1):206–211

    CAS  PubMed  Google Scholar 

  36. Hughes RN (2004) The value of spontaneous alternation behavior (SAB) as a test of retention in pharmacological investigations of memory. Neurosci Biobehav Rev 28(5):497–505

    CAS  PubMed  Google Scholar 

  37. Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85(3):367–370

    CAS  PubMed  Google Scholar 

  38. Piermartiri TC, Pan H, Chen J, McDonough J, Grunberg N, Apland JP, Marini AM (2015) Alpha-linolenic acid-induced increase in neurogenesis is a key factor in the improvement in the passive avoidance task after soman exposure. NeuroMolecular Med 17(3):251–269

    CAS  PubMed  Google Scholar 

  39. Taupin P (2007) BrdU immunohistochemistry for studying adult neurogenesis: paradigms, pitfalls, limitations, and validation. Brain Res Rev 53(1):198–214

    CAS  PubMed  Google Scholar 

  40. Brown JP, Couillard-Després S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467(1):1–10

    CAS  PubMed  Google Scholar 

  41. Parent JM (2008) Persistent hippocampal neurogenesis and epilepsy. Epilepsia 49(Suppl 5):1–2

    PubMed  Google Scholar 

  42. Rao MS, Hattiangady B, Shetty AK (2006) The window and mechanisms of major age-related decline in the production of new neurons within the dentate gyrus of the hippocampus. Aging Cell 5(6):545–558

    CAS  PubMed  Google Scholar 

  43. Oliveira Á, Illes P, Ulrich H (2016) Purinergic receptors in embryonic and adult neurogenesis. Neuropharmacology 104:272–281

    CAS  PubMed  Google Scholar 

  44. Mishra SK, Braun N, Shukla V, Füllgrabe M, Schomerus C, Korf HW, Gachet C, Ikehara Y et al (2006) Extracellular nucleotide signaling in adult neural stem cells: synergism with growth factor-mediated cellular proliferation. Development 133(4):675–684

    CAS  PubMed  Google Scholar 

  45. Xiong F, Gao H, Zhen Y, Chen X, Lin W, Shen J, Yan Y, Wang X et al (2011) Optimal time for passaging neurospheres based on primary neural stem cell cultures. Cytotechnology 63(6):621–631

    PubMed  PubMed Central  Google Scholar 

  46. Kuipers SD, Schroeder JE, Trentani A (2015) Changes in hippocampal neurogenesis throughout early development. Neurobiol Aging 36(1):365–379

    PubMed  Google Scholar 

  47. Hill AS, Sahay A, Hen R (2015) Increasing adult hippocampal neurogenesis is sufficient to reduce anxiety and depression-like behaviors. Neuropsychopharmacology 40(10):2368–2378

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Morais M, Patrício P, Mateus-Pinheiro A, Alves ND, Machado-Santos AR, Correia JS, Pereira J, Pinto L et al (2017) The modulation of adult neuroplasticity is involved in the mood-improving actions of atypical antipsychotics in an animal model of depression. Transl Psychiatry 7(6):e1146

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Jackson EK, Cheng D, Jackson TC, Verrier JD, Gillespie DG (2013) Extracellular guanosine regulates extracellular adenosine levels. Am J Physiol Cell Physiol 304(5):C406–C421

    CAS  PubMed  Google Scholar 

  50. Stafford MR, Bartlett PF, Adams DJ (2007) Purinergic receptor activation inhibits mitogen-stimulated proliferation in primary neurospheres from the adult mouse subventricular zone. Mol Cell Neurosci 35(4):535–548

    CAS  PubMed  Google Scholar 

  51. Benito-Muñoz M, Matute C, Cavaliere F (2016) Adenosine A1 receptor inhibits postnatal neurogenesis and sustains astrogliogenesis from the subventricular zone. Glia 64(9):1465–1478

    PubMed  Google Scholar 

  52. Eminaga S et al (2016) Detection of cell proliferation markers by immunofluorescence staining and microscopy imaging in paraffin-embedded tissue sections. Curr Protoc Mol Biol 115:14.25.1–14.25.14

    Google Scholar 

  53. Deng G, Qiu Z, Li D, Fang Y, Zhang S (2017) Delayed administration of guanosine improves long-term functional recovery and enhances neurogenesis and angiogenesis in a mouse model of photothrombotic stroke. Mol Med Rep 15(6):3999–4004

    CAS  PubMed  PubMed Central  Google Scholar 

  54. O'Leary OF, Cryan JF (2014) A ventral view on antidepressant action: roles for adult hippocampal neurogenesis along the dorsoventral axis. Trends Pharmacol Sci 35(12):675–687

    CAS  PubMed  Google Scholar 

  55. Tasca CI, Lanznaster D, Oliveira KA, Fernández-Dueñas V, Ciruela F (2018) Neuromodulatory effects of guanine-based purines in health and disease. Front Cell Neurosci 12:376

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Research supported by grants from the Brazilian funding agencies to C.I.T.: CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico)—INCT for Excitotoxicity and Neuroprotection; CNPq Productivity Fellowship. T.C.B.P. was the recipient of a post-doctoral fellowship from CAPES (Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior- PAJT—88881.067963/2014-01), and B.S. was the recipient of a Master fellowship from CAPES. FGQBA received Ph.D. fellowship from CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Inês Tasca.

Ethics declarations

Experiments followed the “Principles of Laboratory Animal Care” (NIH 2011) and were approved by the Committee on the Ethics of Animal Experiments of the Federal University of Santa Catarina (CEUA/UFSC 1454270417).

Conflict of Interest

The authors declare that they have no conflict of interest.

Disclosures

The financial support agencies had no further role in study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piermartiri, T.C.B., dos Santos, B., Barros-Aragão, F.G.Q. et al. Guanosine Promotes Proliferation in Neural Stem Cells from Hippocampus and Neurogenesis in Adult Mice. Mol Neurobiol 57, 3814–3826 (2020). https://doi.org/10.1007/s12035-020-01977-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01977-4

Keywords

Navigation