Skip to main content
Log in

Hot Compression Mechanism and Comparative Study on Constitutive Models of Mo–3 vol%Al2O3 Alloys

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The hot compression tests for Mo–3 vol.%Al2O3 alloys were conducted on a Gleeble-1500D thermo-mechanical simulator in the temperatures range of 1000–1300 °C and strain rates range of 0.005–1 s−1. The hot deformation behavior, mechanism associated with microstructure evolution of Mo–3 vol.%Al2O3 alloys was investigated by electron backscattering diffraction analysis. Three types of stress–strain curves were analyzed by quantifying the work hardening rate. The deformation mechanism at 1000–1300 °C mainly included the plastic deformation of Mo–3 vol.%Al2O3 alloy, as well as the dynamic recovery and recrystallization of Mo matrix. The modified Arrhenius, Modified Johnson–Cook and modified Zerilli–Armstrong constitutive equations were established and evaluated by the correlation coefficient (Rc) and average absolute relative error (\({\bar{\text{e}}}\)). The flow stress of Mo–3 vol.%Al2O3 alloys could be well predicted by those three constitutive models, but modified Arrhenius constitutive model had a higher predicated accuracy.

Graphic Abstract

The hot deformation behavior, mechanism associated with microstructure evolution of Mo–3 vol.% Al2O3 alloys has been investigated by EBSD analysis. Three types of stress–strain curves were analyzed by quantifying the work hardening rate. The deformation mechanism at 1000–1300 °C mainly included the plastic deformation of Mo–3 vol.% Al2O3 alloy, as well as the dynamic recovery and recrystallization of Mo matrix. Moreover, modified Arrhenius constitutive model had a higher predicated accuracy for Mo–3 vol.% Al2O3 alloys than modified JC and modified ZA constitutive models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G.-J. Zhang, G. Liu, Y.-J. Sun, F. Jiang, L. Wang, R. Wang, J. Sun, Int. J. Refract. Met. Hard Mater. 27, 173–176 (2009)

    Article  CAS  Google Scholar 

  2. J.H. Perepezko, Science 326, 1068–1069 (2009)

    Article  CAS  Google Scholar 

  3. X. Zhao, Z. Ye, Surf. Coat. Technol. 228, S266–S270 (2013)

    Article  CAS  Google Scholar 

  4. S. Majumdar, S. Raveendra, I. Samajdar, P. Bhargava, I. Sharma, Acta Mater. 57, 4158–4168 (2009)

    Article  CAS  Google Scholar 

  5. L. Xu, S. Wei, J. Li, G. Zhang, B. Dai, Int. J. Refract. Met. Hard Mater. 30, 208–212 (2012)

    Article  Google Scholar 

  6. L. Xu, S. Wei, D. Zhang, Y. Li, G. Zhang, J. Li, Int. J. Refract. Met. Hard Mater. 41, 483–488 (2013)

    Article  CAS  Google Scholar 

  7. Y. Zhou, Y. Gao, S. Wei, K. Pan, Y. Hu, Int. J. Refract Metal Hard Mater. 54, 186–195 (2016)

    Article  CAS  Google Scholar 

  8. A. Chaudhuri, A. Sarkar, S. Suwas, Int. J. Refract. Met. Hard Mater. 73, 168–182 (2018)

    Article  CAS  Google Scholar 

  9. G. Liu, G. Zhang, F. Jiang, X. Ding, Y. Sun, J. Sun, E. Ma, Nat. Mater. 12, 344–350 (2013)

    Article  CAS  Google Scholar 

  10. M. Xiao, F. Li, H. Xie, Y. Wang, Mater. Des. 34, 112–119 (2012)

    Article  CAS  Google Scholar 

  11. Y. Wang, J. Peng, L. Zhong, F. Pan, J. Alloy Compd. 681, 455–470 (2016)

    Article  CAS  Google Scholar 

  12. B. Meng, M. Wan, X. Wu, Y. Zhou, C. Chang, Int. J. Refract. Met. Hard Mater. 45, 41–47 (2014)

    Article  CAS  Google Scholar 

  13. A. Chaudhuri, A.N. Behera, A. Sarkar, R. Kapoor, R.K. Ray, S. Suwas, Acta Mater. 164, 153–164 (2019)

    Article  CAS  Google Scholar 

  14. P. Follansbee, U. Kocks, Acta Metall. 36, 81–93 (1988)

    Article  Google Scholar 

  15. C.M. Sellars, W. McTegart, Acta Metall. 14, 1136–1138 (1966)

    Article  CAS  Google Scholar 

  16. Y. Lin, L.-T. Li, Y.-X. Fu, Y.-Q. Jiang, J. Mater. Sci. 47, 1306–1318 (2012)

    Article  CAS  Google Scholar 

  17. R.-X. Chai, C. Guo, L. Yu, Mater. Sci. Eng. A 534, 101–110 (2012)

    Article  CAS  Google Scholar 

  18. D. Samantaray, S. Mandal, U. Borah, A. Bhaduri, P. Sivaprasad, Mater. Sci. Eng. A 526, 1–6 (2009)

    Article  Google Scholar 

  19. F.J. Zerilli, R.W. Armstrong, J. Appl. Phys. 61, 1816–1825 (1987)

    Article  CAS  Google Scholar 

  20. J. Wang, G. Zhao, L. Chen, J. Li, Mater. Des. 90, 91–100 (2016)

    Article  CAS  Google Scholar 

  21. S. Zhou, K. Deng, J. Li, K. Nie, F. Xu, H. Zhou, J. Fan, Mater. Des. 64, 177–184 (2014)

    Article  CAS  Google Scholar 

  22. C. Cui, Y. Gao, S. Wei, G. Zhang, Y. Zhou, X. Zhu, J. Alloy Compd. 716, 321–329 (2017)

    Article  CAS  Google Scholar 

  23. Y. Yan, L. Geng, A. Li, Mater. Sci. Eng. A 448, 315–325 (2007)

    Article  Google Scholar 

  24. H. Johansen-Berg, T.E. Behrens, Diffusion MRI: from Quantitative Measurement to in vivo Neuroanatomy (Academic Press, Cambridge, 2013)

    Google Scholar 

  25. R. Liang, A.S. Khan, Int. J. Plast. 15, 963–980 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Key-Area Research and Development Program of GuangDong Province (2019B010942001), the Guangxi Innovation Driven Development Project (GUIKEAA18242001), the Fundamental Research Funds for the Central Universities of China (xzy012019001, xtr0118008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liying Yao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, L., Gao, Y. & Xu, L. Hot Compression Mechanism and Comparative Study on Constitutive Models of Mo–3 vol%Al2O3 Alloys. Met. Mater. Int. 27, 5335–5345 (2021). https://doi.org/10.1007/s12540-020-00831-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00831-5

Keywords

Navigation